A Block Coordinate DCA Approach for Large-Scale Kernel SVM | SpringerLink
Skip to main content

A Block Coordinate DCA Approach for Large-Scale Kernel SVM

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

In this study, we propose a novel block coordinate DCA based method for tackling the large-scale kernel SVM. The proposed method employs a unified scheme that is capable of handling almost all common losses in SVM. Owing to the block coordinate approach, the learning algorithm can deal with the high dimensionality of the optimization variables by updating one block of coordinates at a time to sufficiently decrease the objective value while keeping the other blocks fixed. As a result, calculation time can be significantly reduced while preventing the computer’s memory from overflowing, which is crucial for computing in the context of big data. Numerical experiments are conducted intensively, which shows the algorithm’s merits in both accuracy and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.csie.ntu.edu.tw/ cjlin/libsvm/.

  2. 2.

    https://archive.ics.uci.edu/.

  3. 3.

    http://qwone.com/ jason/20newsgroups/.

  4. 4.

    https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse4412.

  5. 5.

    www.mathworks.com/help/releases/r2021a/matlab/ref/double.normalize.html.

  6. 6.

    https://github.com/stayones/code-unisvm.

  7. 7.

    www.mathworks.com/help/releases/r2021a/matlab/ref/linsolve.html.

References

  1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of COLT 1992, pp. 144–152 (1992)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  3. Chou, H.Y., Lin, P.Y., Lin, C.J.: Dual coordinate-descent methods for linear one-class SVM and SVDD. In: Proceedings SIAM International Conference Data Mining, pp. 181–189. SIAM (2020)

    Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  5. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method for large-scale linear SVM. In: Proceedings of the 25th International Conference on Machine Learning, pp. 408–415 (2008)

    Google Scholar 

  6. Le, H.M., Le Thi, H.A., Nguyen, M.C.: Sparse semi-supervised support vector machines by dc programming and DCA. Neurocomputing 153, 62–76 (2015)

    Article  Google Scholar 

  7. Le Thi, H.A., Le, H.M., Nguyen, V.V., Pham Dinh, T.: A dc programming approach for feature selection in support vector machines learning. Adv. Data Anal. Classif. 2(3), 259–278 (2008). https://doi.org/10.1007/s11634-008-0030-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Le Thi, H.A., Le, H.M., Pham Dinh, T.: Feature selection in machine learning: an exact penalty approach using a difference of convex function algorithm. Mach. Learn. 101(1), 163–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with dc models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, C.P., Roth, D.: Distributed box-constrained quadratic optimization for dual linear SVM. In: ICML, pp. 987–996. PMLR (2015)

    Google Scholar 

  12. Lee, C.P., Wright, S.J.: Random permutations fix a worst case for cyclic coordinate descent. IMA J. Numer. Anal. 39(3), 1246–1275 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, Z., Xiao, L.: On the complexity analysis of randomized block-coordinate descent methods. Math. Program. 152, 615–642 (2014). https://doi.org/10.1007/s10107-014-0800-2

  14. Nutini, J., Laradji, I., Schmidt, M.: Let’s make block coordinate descent go fast: faster greedy rules, message-passing, active-set complexity, and superlinear convergence. arXiv preprint arXiv:1712.08859 (2017)

  15. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Pham Dinh, T., Le Thi, H.A.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Nguyen, N.T., Le-Thi, H.A. (eds.) Transactions on Computational Intelligence XIII. LNCS, vol. 8342, pp. 1–37. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54455-2_1

    Chapter  Google Scholar 

  18. Phan, D.N., Le Thi, H.A.: Group variable selection via lp,0 regularization and application to optimal scoring. Neural Netw. 118, 220–234 (2019)

    Article  MATH  Google Scholar 

  19. Qin, Z., Scheinberg, K., Goldfarb, D.: Efficient block-coordinate descent algorithms for the group lasso. Math. Program. Comput. 5(2), 143–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) COLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44581-1_27

    Chapter  Google Scholar 

  21. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: from theory to algorithms. Cambridge University Press (2014)

    Google Scholar 

  22. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media. Springer, New York (1999).https://doi.org/10.1007/978-1-4757-3264-1

  23. Zhao, Z., Zhang, R., Cox, J., Duling, D., Sarle, W.: Massively parallel feature selection: an approach based on variance preservation. Mach. Learn. 92(1), 195–220 (2013). https://doi.org/10.1007/s10994-013-5373-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, S., Zhou, W.: Unified SVM algorithm based on LS-DC loss. Mach. Learn. 1–28 (2021). https://doi.org/10.1007/s10994-021-05996-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Tuan Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, V.T., Luu, H.P.H., Le Thi, H.A. (2022). A Block Coordinate DCA Approach for Large-Scale Kernel SVM. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics