New Constructions of Collapsing Hashes | SpringerLink
Skip to main content

New Constructions of Collapsing Hashes

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13509))

Included in the following conference series:

Abstract

Collapsing is a post-quantum strengthening of collision resistance, needed to lift many classical results to the quantum setting. Unfortunately, the only existing standard-model proofs of collapsing hashes require LWE. We construct the first collapsing hashes from the quantum hardness of any one of the following problems:

  • LPN in a variety of low noise or high-hardness regimes, essentially matching what is known for collision resistance from LPN.

  • Finding cycles on exponentially-large expander graphs, such as those arising from isogenies on elliptic curves.

  • The “optimal” hardness of finding collisions in any hash function.

  • The polynomial hardness of finding collisions, assuming a certain plausible regularity condition on the hash.

As an immediate corollary, we obtain the first statistically hiding post-quantum commitments and post-quantum succinct arguments (of knowledge) under the same assumptions. Our results are obtained by a general theorem which shows how to construct a collapsing hash \(H'\) from a post-quantum collision-resistant hash function H, regardless of whether or not H itself is collapsing, assuming H satisfies a certain regularity condition we call “semi-regularity”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [Zha19b] gives a proof relative to a novel computational assumption, but it has been cryptanalyzed [Rob21].

References

  1. Alon, N., Benjamini, I., Lubetzky, E., Sodin, S.: Non-backtracking random walks mix faster. Commun. Contemp. Math. 9, 585–603 (2007)

    Article  MathSciNet  Google Scholar 

  2. Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and applications to hybrid quantum/classical authentication. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) 52nd ACM STOC, pp. 255–268. ACM Press (2020)

    Google Scholar 

  3. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_18

    Chapter  Google Scholar 

  4. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27

    Chapter  Google Scholar 

  5. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 55th FOCS, pp. 474–483. IEEE Computer Society Press (2014)

    Google Scholar 

  6. Brassard, G., Høyer, P., Tapp, A.: Quantum algorithm for the collision problem. ACM SIGACT News (Cryptol. Column) 28, 14–19 (1997)

    Article  Google Scholar 

  7. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-case hardness for LPN and cryptographic hashing via code smoothing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 619–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_21

    Chapter  Google Scholar 

  8. Chia, N.-H., Chung, K.-M., Yamakawa, T.: A black-box approach to post-quantum zero-knowledge in constant rounds. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 315–345. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_12

    Chapter  Google Scholar 

  9. Czajkowski, J., Hülsing, A., Schaffner, C.: Quantum indistinguishability of random sponges. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 296–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_11

    Chapter  Google Scholar 

  10. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chiesa, A., Ma, F., Spooner, N., Zhandry, M.: Post-quantum succinct arguments. In: Proceedings of FOCS (2021)

    Google Scholar 

  12. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291

  13. Cao, S., Xue, R.: The gap is sensitive to size of preimages: collapsing property doesn’t go beyond quantum collision-resistance for preimages bounded hash functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, LNCS 13509, pp. 564–595 (2022)

    Google Scholar 

  14. Czajkowski, J.: Quantum indifferentiability of SHA-3. Cryptology ePrint Archive, Report 2021/192 (2021). https://eprint.iacr.org/2021/192

  15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transformation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13

    Chapter  MATH  Google Scholar 

  16. Fuchs, E., Lauter, K., Litman, M., Tran, A.: A cryptographic hash function from Markoff triples. Cryptology ePrint Archive, Report 2021/983 (2021). https://eprint.iacr.org/2021/983

  17. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom generators (extended abstract). In: 29th FOCS, pp. 12–24. IEEE Computer Society Press (1988)

    Google Scholar 

  18. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  Google Scholar 

  19. Hosoyamada, A., Sasaki, Yu.: Quantum collision attacks on reduced SHA-256 and SHA-512. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 616–646. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_22

    Chapter  Google Scholar 

  20. Lombardi, A., Ma, F., Spooner, N.: Post-quantum zero knowledge, revisited (or: how to do quantum rewinding undetectably). Cryptology ePrint Archive, Report 2021/1543 (2021). https://eprint.iacr.org/2021/1543

  21. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12

    Chapter  Google Scholar 

  22. Petit, C., Lauter, K., Quisquater, J.-J.: Full cryptanalysis of LPS and Morgenstern hash functions. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 263–277. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_18

    Chapter  MATH  Google Scholar 

  23. Petit, C., Lauter, K.E., Quisquater, J.-J.: Cayley hashes: a class of efficient graph-based hash functions (2012)

    Google Scholar 

  24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin,R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)

    Google Scholar 

  25. Roberts, B.: Security analysis of quantum lightning. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 562–567. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_19

    Chapter  Google Scholar 

  26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

  27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  28. Tillich, J.-P., Zémor, G.: Hashing with SL\(_2\). In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_5

    Chapter  Google Scholar 

  29. Unruh, D.: Collapse-binding quantum commitments without random oracles. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 166–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_6

    Chapter  Google Scholar 

  30. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18

    Chapter  Google Scholar 

  31. Unruh, D.: Collapsing sponges: post-quantum security of the sponge construction. Cryptology ePrint Archive, Report 2017/282 (2017). https://eprint.iacr.org/2017/282

  32. Van De Graaf, J.: Towards a formal definition of security for quantum protocols. Ph.D. thesis, CAN (1998). AAINQ35648

    Google Scholar 

  33. Watrous, J.: Zero-knowledge against quantum attacks. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 296–305. ACM Press (2006)

    Google Scholar 

  34. Yu, Y., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hashing from L-exponential learning parity with noise. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_1

    Chapter  Google Scholar 

  35. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

  36. Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 408–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Zhandry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhandry, M. (2022). New Constructions of Collapsing Hashes. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13509. Springer, Cham. https://doi.org/10.1007/978-3-031-15982-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15982-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15981-7

  • Online ISBN: 978-3-031-15982-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics