Abstract
Collapsing is a post-quantum strengthening of collision resistance, needed to lift many classical results to the quantum setting. Unfortunately, the only existing standard-model proofs of collapsing hashes require LWE. We construct the first collapsing hashes from the quantum hardness of any one of the following problems:
-
LPN in a variety of low noise or high-hardness regimes, essentially matching what is known for collision resistance from LPN.
-
Finding cycles on exponentially-large expander graphs, such as those arising from isogenies on elliptic curves.
-
The “optimal” hardness of finding collisions in any hash function.
-
The polynomial hardness of finding collisions, assuming a certain plausible regularity condition on the hash.
As an immediate corollary, we obtain the first statistically hiding post-quantum commitments and post-quantum succinct arguments (of knowledge) under the same assumptions. Our results are obtained by a general theorem which shows how to construct a collapsing hash \(H'\) from a post-quantum collision-resistant hash function H, regardless of whether or not H itself is collapsing, assuming H satisfies a certain regularity condition we call “semi-regularity”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alon, N., Benjamini, I., Lubetzky, E., Sodin, S.: Non-backtracking random walks mix faster. Commun. Contemp. Math. 9, 585–603 (2007)
Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and applications to hybrid quantum/classical authentication. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) 52nd ACM STOC, pp. 255–268. ACM Press (2020)
Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_18
Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27
Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 55th FOCS, pp. 474–483. IEEE Computer Society Press (2014)
Brassard, G., Høyer, P., Tapp, A.: Quantum algorithm for the collision problem. ACM SIGACT News (Cryptol. Column) 28, 14–19 (1997)
Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-case hardness for LPN and cryptographic hashing via code smoothing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 619–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_21
Chia, N.-H., Chung, K.-M., Yamakawa, T.: A black-box approach to post-quantum zero-knowledge in constant rounds. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 315–345. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_12
Czajkowski, J., Hülsing, A., Schaffner, C.: Quantum indistinguishability of random sponges. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 296–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_11
Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)
Chiesa, A., Ma, F., Spooner, N., Zhandry, M.: Post-quantum succinct arguments. In: Proceedings of FOCS (2021)
Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291
Cao, S., Xue, R.: The gap is sensitive to size of preimages: collapsing property doesn’t go beyond quantum collision-resistance for preimages bounded hash functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, LNCS 13509, pp. 564–595 (2022)
Czajkowski, J.: Quantum indifferentiability of SHA-3. Cryptology ePrint Archive, Report 2021/192 (2021). https://eprint.iacr.org/2021/192
Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transformation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13
Fuchs, E., Lauter, K., Litman, M., Tran, A.: A cryptographic hash function from Markoff triples. Cryptology ePrint Archive, Report 2021/983 (2021). https://eprint.iacr.org/2021/983
Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom generators (extended abstract). In: 29th FOCS, pp. 12–24. IEEE Computer Society Press (1988)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Hosoyamada, A., Sasaki, Yu.: Quantum collision attacks on reduced SHA-256 and SHA-512. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 616–646. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_22
Lombardi, A., Ma, F., Spooner, N.: Post-quantum zero knowledge, revisited (or: how to do quantum rewinding undetectably). Cryptology ePrint Archive, Report 2021/1543 (2021). https://eprint.iacr.org/2021/1543
Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12
Petit, C., Lauter, K., Quisquater, J.-J.: Full cryptanalysis of LPS and Morgenstern hash functions. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 263–277. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_18
Petit, C., Lauter, K.E., Quisquater, J.-J.: Cayley hashes: a class of efficient graph-based hash functions (2012)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin,R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)
Roberts, B.: Security analysis of quantum lightning. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 562–567. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_19
Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (1994)
Tillich, J.-P., Zémor, G.: Hashing with SL\(_2\). In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_5
Unruh, D.: Collapse-binding quantum commitments without random oracles. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 166–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_6
Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18
Unruh, D.: Collapsing sponges: post-quantum security of the sponge construction. Cryptology ePrint Archive, Report 2017/282 (2017). https://eprint.iacr.org/2017/282
Van De Graaf, J.: Towards a formal definition of security for quantum protocols. Ph.D. thesis, CAN (1998). AAINQ35648
Watrous, J.: Zero-knowledge against quantum attacks. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 296–305. ACM Press (2006)
Yu, Y., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hashing from L-exponential learning parity with noise. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_1
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 408–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Zhandry, M. (2022). New Constructions of Collapsing Hashes. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13509. Springer, Cham. https://doi.org/10.1007/978-3-031-15982-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-15982-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15981-7
Online ISBN: 978-3-031-15982-4
eBook Packages: Computer ScienceComputer Science (R0)