Abstract
This work introduces new key recovery attacks against the Rainbow signature scheme, which is one of the three finalist signature schemes still in the NIST Post-Quantum Cryptography standardization project. The new attacks outperform previously known attacks for all the parameter sets submitted to NIST and make a key-recovery practical for the SL 1 parameters. Concretely, given a Rainbow public key for the SL 1 parameters of the second-round submission, our attack returns the corresponding secret key after on average 53 h (one weekend) of computation time on a standard laptop.
Ward Beullens holds Junior Post-Doctoral fellowship 1S95620N from the Research Foundation Flanders (FWO).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baena, J., Briaud, P., Cabarcas, D., Perlner, R., Smith-Tone, D., Verbel, J.: Improving support-minors rank attacks: applications to G\(e\)MSS and rainbow. Cryptology ePrint Archive, Report 2021/1677 (2021). https://eprint.iacr.org/2021/1677
Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17
Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13
Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_23
Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Solving quadratic equations with XL on parallel architectures. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 356–373. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_21
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27
Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12
Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_15
Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15
Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055733
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2
Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9_99
Mohamed, W.S.A., Ding, J., Kleinjung, T., Bulygin, S., Buchmann, J.: PWXL: a parallel Wiedemann-XL algorithm for solving polynomial equations over GF(2). In: Conference on Symbolic Computation and Cryptography, p. 89 (2010)
Patarin, J.: The oil and vinegar signature scheme. In: Dagstuhl Workshop on Cryptography, September 1997 (1997)
Perlner, R., Smith-Tone, D.: Rainbow band separation is better than we thought. Cryptology ePrint Archive, Report 2020/702 (2020). https://eprint.iacr.org/2020/702
Response to recent paper by Ward Beullens (2020). https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_43
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Rank Experiments
A Rank Experiments
Simple Attack. For some rainbow parameter sets over \(\mathbb {F}_{31}\) we construct some \(\tilde{\mathcal {P}}(\textbf{x}) = 0\) systems as in our simple attack, and compute the ranks of Macaulay matrices of these systems at various degrees. These ranks are displayed in Table 2. Similarly, for some rainbow parameters over \(\mathbb {F}_{16}\), we construct some \(\hat{\mathcal {P}}(\textbf{x}) = 0\) systems, and we displayed the ranks of their Macaulay matrices in Table 3. We observe in both cases that the ranks are identical to the ranks of systems of uniformly random quadratic equations with the same dimensions. I.e., if \(\tilde{\mathcal {P}}(\textbf{x})\) (or \(\hat{\mathcal {P}}(\textbf{x})\)) has m equations and n variables, then the rank of its Macaulay matrix at degree D is equal to the coefficient of \(t^D\) in the power series expansion of
if this coefficient is positive. Otherwise, the system has a kernel of dimension 1, which corresponds to the 1-dimensional space of solutions. This is evidence that the \(\tilde{\mathcal {P}}(\textbf{x}) = 0\) and \(\hat{\mathcal {P}}(\textbf{x}) = 0\) systems do not have special properties that make them easier or harder to solve in comparison with random systems.
Combined Attack. Table 4 reports on some of our rank experiments for the combined attack. For some small Rainbow parameter sets, we executed the combined attack from Sect. 4 to derive a MinRank instance with \(n-m\) matrices with \(n-1\) rows and m columns (of which we keep \(m'\)). Then we constructed the linearized systems as they appear in the MinRank solving algorithm of Bardet et al. at several bi-degrees (b, 1), and we compute their ranks. We found that in odd characteristic, the rank of the Macaulay matrices always matches those of random MinRank instances with the same parameters. In contrast, we sometimes observe a small rank defect in characteristic two (they are underlined in the Table 4).
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Beullens, W. (2022). Breaking Rainbow Takes a Weekend on a Laptop. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-15979-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-15979-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15978-7
Online ISBN: 978-3-031-15979-4
eBook Packages: Computer ScienceComputer Science (R0)