Abstract
Paths \(P^1,\ldots ,P^k\) in a graph \(G=(V,E)\) are mutually induced if any two distinct \(P^i\) and \(P^j\) have neither common vertices nor adjacent vertices. The Induced Disjoint Paths problem is to decide if a graph G with k pairs of specified vertices \((s_i,t_i)\) contains k mutually induced paths \(P^i\) such that each \(P^i\) starts from \(s_i\) and ends at \(t_i\). This is a classical graph problem that is NP-complete even for \(k=2\). We introduce a natural generalization, Induced Disjoint Connected Subgraphs: instead of connecting pairs of terminals, we must connect sets of terminals. We give almost-complete dichotomies of the computational complexity of both problems for H-free graphs, that is, graphs that do not contain some fixed graph H as an induced subgraph. Finally, we give a complete classification of the complexity of the second problem if the number k of terminal sets is fixed, that is, not part of the input.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belmonte, R., Golovach, P.A., Heggernes, P., van’t Hof, P., Kaminski, M., Paulusma, D.: Detecting fixed patterns in chordal graphs in polynomial time. Algorithmica 69, 501–521 (2014)
Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discret. Math. 90, 85–92 (1991)
Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the maximum weight stable set problem. Theoret. Comput. Sci. 389, 295–306 (2007)
Camby, E., Schaudt, O.: A new characterization of \({P}_k\)-free graphs. Algorithmica 75, 205–217 (2016)
Fellows, M.R.: The Robertson-Seymour theorems: a survey of applications. Proc. AMS-IMS-SIAM Joint Summer Res. Conf. Contemp. Math. 89, 1–18 (1989)
Fiala, J., Kamiński, M., Lidický, B., Paulusma, D.: The \(k\)-in-a-Path problem for claw-free graphs. Algorithmica 62, 499–519 (2012)
Gartland, P., Lokshtanov, D.: Independent set on \({P}_k\)-free graphs in quasi-polynomial time. In: Proceedings of the FOCS 2020, pp. 613–624 (2020)
Gartland, P., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Finding large induced sparse subgraphs in \({C}_{\>t}\)-free graphs in quasipolynomial time. In: Proceedings of the STOC 2021, pp. 330–341 (2021)
Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs. SIAM J. Discret. Math. 29, 348–375 (2015)
Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in circular-arc graphs in linear time. Theoret. Comput. Sci. 640, 70–83 (2016)
Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-free graphs. J. Comput. Syst. Sci. 124, 170–191 (2022)
Grzesik, A., Klimosová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \({P}_6\)-free graphs. In: Proceedings of the SODA 2019, pp. 1257–1271 (2019)
van’t Hof, P., Paulusma, D.: A new characterization of \({P}_6\)-free graphs. Discrete Appl. Math. 158, 731–740 (2010)
van’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected parts. Theoret. Comput. Sci. 410, 4834–4843 (2009)
Jaffke, L., Kwon, O., Telle, J.A.: Mim-width I. induced path problems. Discrete Appl. Math. 278, 153–168 (2020)
Johnson, M., Paesani, G., Paulusma, D.: Connected Vertex Cover for \((s{P}_1+{P}_5)\)-free graphs. Algorithmica 82, 20–40 (2020)
Kawarabayashi, K., Kobayashi, Y.: A linear time algorithm for the induced disjoint paths problem in planar graphs. J. Comput. Syst. Sci. 78, 670–680 (2012)
Kern, W., Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J.: Disjoint paths and connected subgraphs for \(H\)-free graphs. Theoret. Comput. Sci. 898, 59–68 (2022)
Kern, W., Paulusma, D.: Contracting to a longest path in \({H}\)-free graphs. Proc. ISAAC 2020, LIPIcs 181, 22:1–22:18 (2020)
Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: Proceedings of the SODA 2009, pp. 1146–1155 (2009)
Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs. Discret. Appl. Math. 157, 3540–3551 (2009)
Li, W.N.: Two-segmented channel routing is strong NP-complete. Discret. Appl. Math. 78, 291–298 (1997)
Lynch, J.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsl. 5, 31–36 (1975)
Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J.: Few induced disjoint paths for \({H}\)-free graphs. Proc. ISCO 2022, LNCS (to appear)
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theor. Ser. B 28, 284–304 (1980)
Paesani, G., Paulusma, D., Rzążewski, P.: Feedback Vertex Set and Even Cycle Transversal for \({H}\)-free graphs: finding large block graphs. SIAM J. Discret. Math. (to appear)
Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Quasi-polynomial-time algorithm for independent set in \({P}_t\)-free graphs via shrinking the space of induced paths. In: Proceedings of the SOSA 2021, pp. 204–209 (2021)
Radovanović, M., Trotignon, N., Vus̆ković, K.: The (theta, wheel)-free graphs Part IV: induced paths and cycles. J. Comb. Theor. Ser. B 146, 495–531 (2021)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theor. Ser. B 63, 65–110 (1995)
Schaefer, T.J.: The complexity of satisfiability problems. In: STOC, pp. 216–226 (1978)
Shibi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discret. Math. 29, 53–76 (1980)
Acknowledgments
We thank Paweł Rzążewski for the argument using blob graphs, which simplified two of our proofs and led to the case \(H=P_6\) in Theorem 1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J. (2022). Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)