SafeDrones: Real-Time Reliability Evaluation of UAVs Using Executable Digital Dependable Identities | SpringerLink
Skip to main content

SafeDrones: Real-Time Reliability Evaluation of UAVs Using Executable Digital Dependable Identities

  • Conference paper
  • First Online:
Model-Based Safety and Assessment (IMBSA 2022)

Abstract

The use of Unmanned Arial Vehicles (UAVs) offers many advantages across a variety of applications. However, safety assurance is a key barrier to widespread usage, especially given the unpredictable operational and environmental factors experienced by UAVs, which are hard to capture solely at design-time. This paper proposes a new reliability modeling approach called SafeDrones to help address this issue by enabling runtime reliability and risk assessment of UAVs. It is a prototype instantiation of the Executable Digital Dependable Identity (EDDI) concept, which aims to create a model-based solution for real-time, data-driven dependability assurance for multi-robot systems. By providing real-time reliability estimates, SafeDrones allows UAVs to update their missions accordingly in an adaptive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, R., Forster, M., Trapp, M.: Determining configuration probabilities of safety-critical adaptive systems. In: 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW 2007), vol. 2, pp. 548–555. IEEE (2007)

    Google Scholar 

  2. Armengaud, E., et al.: DDI: a novel technology and innovation model for dependable, collaborative and autonomous systems. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1626–1631. IEEE (2021)

    Google Scholar 

  3. Aslansefat, K., Gogani, M.B., Kabir, S., Shoorehdeli, M.A., Yari, M.: Performance evaluation and design for variable threshold alarm systems through semi-Markov process. ISA Trans. 97, 282–295 (2020)

    Article  Google Scholar 

  4. Aslansefat, K., Kabir, S., Abdullatif, A., Vasudevan, V., Papadopoulos, Y.: Toward improving confidence in autonomous vehicle software: a study on traffic sign recognition systems. Computer 54(8), 66–76 (2021)

    Article  Google Scholar 

  5. Aslansefat, K., Kabir, S., Gheraibia, Y., Papadopoulos, Y.: Dynamic fault tree analysis: state-of-the-art in modeling, analysis, and tools. In: Reliability Management and Engineering: Challenges and Future Trends, chap. 4, pp. 73–111. CRC Press- Taylor & Francis (2020)

    Google Scholar 

  6. Aslansefat, K., Latif-Shabgahi, G.R.: A hierarchical approach for dynamic fault trees solution through semi-Markov process. IEEE Trans. Reliab. 69(3), 986–1003 (2019)

    Article  Google Scholar 

  7. Aslansefat, K., Marques, F., Mendonça, R., Barata, J.: A Markov process-based approach for reliability evaluation of the propulsion system in multi-rotor drones. In: Camarinha-Matos, L.M., Almeida, R., Oliveira, J. (eds.) DoCEIS 2019. IAICT, vol. 553, pp. 91–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17771-3_8

    Chapter  Google Scholar 

  8. Aslansefat, K., Sorokos, I., Whiting, D., Tavakoli Kolagari, R., Papadopoulos, Y.: SafeML: safety monitoring of machine learning classifiers through statistical difference measures. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020. LNCS, vol. 12297, pp. 197–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58920-2_13

    Chapter  Google Scholar 

  9. Belcastro, C.M., Newman, R.L., Evans, J., Klyde, D.H., Barr, L.C., Ancel, E.: Hazards identification and analysis for unmanned aircraft system operations. In: 17th AIAA Aviation Technology, Integration, and Operations Conference, p. 3269 (2017)

    Google Scholar 

  10. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes. Reliab. Eng. Syst. Saf. 82(2), 149–163 (2003)

    Article  Google Scholar 

  11. Cochran, J.: Wiley Encyclopedia of Operations Research and Management Science. Wiley, Hoboken (2010)

    Book  Google Scholar 

  12. DEIS Consortium: Open dependability exchange metamodel. https://github.com/Digital-Dependability-Identities/ODE. Accessed 28 Apr 2022

  13. Franco, B.J.D.O.M., Góes, L.C.S.: Failure analysis methods in unmanned aerial vehicle (UAV) applications. In: Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering (2007)

    Google Scholar 

  14. Gheraibia, Y., Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y.: Safety+ AI: a novel approach to update safety models using artificial intelligence. IEEE Access 7, 135855–135869 (2019)

    Article  Google Scholar 

  15. Guo, J., Elsayed, E.A.: Reliability of balanced multi-level unmanned aerial vehicles. Comput. Oper. Res. 106, 1–13 (2019)

    Article  MathSciNet  Google Scholar 

  16. Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., Gheraibia, Y.: A conceptual framework to incorporate complex basic events in HiP-HOPS. In: Papadopoulos, Y., Aslansefat, K., Katsaros, P., Bozzano, M. (eds.) IMBSA 2019. LNCS, vol. 11842, pp. 109–124. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32872-6_8

    Chapter  Google Scholar 

  17. Kabir, S., et al.: A runtime safety analysis concept for open adaptive systems. In: Papadopoulos, Y., Aslansefat, K., Katsaros, P., Bozzano, M. (eds.) IMBSA 2019. LNCS, vol. 11842, pp. 332–346. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32872-6_22

    Chapter  Google Scholar 

  18. Kim, D.S., Ghosh, R., Trivedi, K.S.: A hierarchical model for reliability analysis of sensor networks. In: 2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing, pp. 247–248 (2010)

    Google Scholar 

  19. Murtha, J.F.: Evidence theory and fault tree analysis to cost-effectively improve reliability in small UAV design. Virginia Polytechnic Institute and State University (2009)

    Google Scholar 

  20. Olson, I., Atkins, E.M.: Qualitative failure analysis for a small quadrotor unmanned aircraft system. In: AIAA Guidance, Navigation, and Control (GNC) Conference, p. 4761 (2013)

    Google Scholar 

  21. Ottavi, M., et al.: Dependable multicore architectures at nanoscale: The view from Europe. IEEE Design Test 32(2), 17–28 (2014)

    Article  Google Scholar 

  22. Reich, J., Trapp, M.: SINADRA: towards a framework for assurable situation-aware dynamic risk assessment of autonomous vehicles. In: 16th European Dependable Computing Conference, EDCC 2020, Munich, Germany, 7–10 September 2020, pp. 47–50. IEEE (2020). https://doi.org/10.1109/EDCC51268.2020.00017

  23. Sadeghzadeh, I., Mehta, A., Zhang, Y.: Fault/damage tolerant control of a quadrotor helicopter UAV using model reference adaptive control and gain-scheduled PID. In: AIAA Guidance, Navigation, and Control Conference, p. 6716 (2011)

    Google Scholar 

  24. Savva, A., et al.: ICARUS: automatic autonomous power infrastructure inspection with UAVs. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 918–926. IEEE (2021)

    Google Scholar 

  25. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems. ACM Trans. Auton. Adapt. Syst. 8(2), 1–20 (2013). https://doi.org/10.1145/2491465.2491467

    Article  Google Scholar 

  26. Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.: WAP: digital dependability identities. In: 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE), pp. 324–329. IEEE (2015)

    Google Scholar 

  27. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependability analysis: state-of-the-art, challenges, and future outlook. In: Software Quality Assurance, pp. 251–278. Elsevier (2016)

    Google Scholar 

  28. Soper, S., Day, M.: Amazon drone crashes hit Jeff Bezos’ delivery dreams. https://www.bloomberg.com/news/features/2022-04-10/amazon-drone-crashes-delays-put-bezos-s-delivery-dream-at-risk. Accessed 10 Apr 2022

  29. Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering: Modeling, Analysis, and Applications. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  30. Valianti, P., Papaioannou, S., Kolios, P., Ellinas, G.: Multi-agent coordinated close-in jamming for disabling a rogue drone. IEEE Trans. Mob. Comput. (2021)

    Google Scholar 

  31. Vesely, W., Dugan, J., Fragola, J., Minarick, Railsback, J.: Fault tree handbook with aerospace applications. Technical report, NASA office of safety and mission assurance, Washington, DC (2002)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Secure and Safe Multi-Robot Systems (SESAME) H2020 Project under Grant Agreement 101017258, the European Union’s Horizon 2020 grant agreement No 739551 (KIOS CoE) and from the Government of the Republic of Cyprus through the Cyprus Deputy Ministry of Research, Innovation and Digital Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koorosh Aslansefat .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Proposed Fault Tree of a Generic UAV

Figure 5 illustrates the proposed Fault Tree of a generic UAV consist of nine failure categories including: I) Communication system failure, II) navigation system failure, III) Computer system failure, IV) Environment detection systems, V) Propulsion system, VI) Energy system, VII) Obstacle avoidance system, VIII) Security system, and IX) Landing system.

Fig. 5.
figure 5

Proposed fault tree of a generic UAV

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aslansefat, K. et al. (2022). SafeDrones: Real-Time Reliability Evaluation of UAVs Using Executable Digital Dependable Identities. In: Seguin, C., Zeller, M., Prosvirnova, T. (eds) Model-Based Safety and Assessment. IMBSA 2022. Lecture Notes in Computer Science, vol 13525. Springer, Cham. https://doi.org/10.1007/978-3-031-15842-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15842-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15841-4

  • Online ISBN: 978-3-031-15842-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics