Soft Spatial Querying on JSON Data Sets | SpringerLink
Skip to main content

Soft Spatial Querying on JSON Data Sets

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13389))

Included in the following conference series:

Abstract

JSON (JavaScript Object Notation) has become popular for exchanging data sets over the Internet. Many data sets are “geo-tagged”, since they represent spatial entities. As an effect, spatial analysts have to perform spatial queries on JSON data sets. While working with large data sets, crisp (on/off) spatial relations could be marginally effective; instead, soft relations and “soft spatial querying” could be the right tools, because they reveal the extent of a given spatial relation. In this paper, we present the recent evolution of J-CO-QL \(^+\), the query language of the J-CO Framework (under development at University of Bergamo, Italy) towards soft spatial querying on geo-tagged JSON data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts.

  2. 2.

    https://ec.europa.eu/eurostat/databrowser/explore/all/all_themes?lang=en.

  3. 3.

    https://www.dati.lombardia.it/Territorio/Lago-10000-CT10/qm9t-uzst.

  4. 4.

    Github repository - https://github.com/JcoProjectTeam/JcoProjectPage.

References

  1. Castelltort, A., Laurent, A.: Towards fuzzy querying of NoSQL document-oriented databases. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 444, pp. 384–395. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08852-5_40

    Chapter  Google Scholar 

  2. Blair, D.C.: Information retrieval, 2nd edn. c.j. van rijsbergen. london: Butterworths; 1979: 208 pp. price: \$32.50. J. Am. Soc. Inf. Sci. 30(6), 374–375 (1979). https://doi.org/10.1002/asi.4630300621

  3. Bordogna, G., Ciriello, D.E., Psaila, G.: A flexible framework to cross-analyze heterogeneous multi-source geo-referenced information: The J-CO-QL proposal and its implementation. In: Proceedings of the International Conference on Web Intelligence, pp. 499–508 (2017)

    Google Scholar 

  4. Bordogna, G., Psaila, G.: Modeling soft conditions with unequal importance in fuzzy databases based on the vector p-norm. In: IPMU Conference, Malaga (2008)

    MATH  Google Scholar 

  5. Bordogna, G., Psaila, G.: Soft aggregation in flexible databases querying based on the vector p-norm. Int. J. Uncert. Fuzzi. Knowl. Based Syst. 17(supp01), 25–40 (2009)

    Article  Google Scholar 

  6. Bordogna, G., Psaila, G.: Customizable flexible querying in classical relational databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 191–217. IGI Global (2008)

    Google Scholar 

  7. Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of flexible queries and uncertain or imprecise databases. In: Uncertainty Management in Information Systems, pp. 285–324. Springer, New York (1997). https://doi.org/10.1007/978-1-4615-6245-0

  8. Bosc, P., Pivert, O.: SQLF: a relational database language for fuzzy querying. IEEE trans. Fuzzy Syst. 3(1), 1–17 (1995)

    Article  Google Scholar 

  9. Bosc, P., Pivert, O.: SQLF: query functionality on top of a regular relational database management system. In: Knowledge Management in Fuzzy Databases, pp. 171–190. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-1865-9

  10. Fosci, P., Marrara, S., Psaila, G.: Soft querying Geojson documents within the J-Co framework. In: 16th International Conference on Web Information Systems and Technologies (WEBIST 2020), pp. 253–265 (2020)

    Google Scholar 

  11. Fosci, P., Psaila, G.: Towards flexible retrieval, integration and analysis of JSON data sets through fuzzy sets: a case study. Information 12(7), 258 (2021)

    Article  Google Scholar 

  12. Galindo, J.: New characteristics in FSQL, a fuzzy SQL for fuzzy databases. WSEAS Trans. Inf. Sci. Appl. 2(2), 161–169 (2005)

    Google Scholar 

  13. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A server for fuzzy SQL queries. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS, vol. 1495, pp. 164–174. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055999

    Chapter  Google Scholar 

  14. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design, and Implementation. IGI Global (2006)

    Google Scholar 

  15. Kacprzyk, J., Zadrożny, S.: Fquery for access: Fuzzy querying for a windows-based DBMS. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems. Studies in Fuzziness, vol. 5. Physica, Heidelberg (1995). https://doi.org/10.1007/978-3-7908-1897-0_18

  16. Medina, J.M., Blanco, I.J., Pons, O.: A fuzzy database engine for mongoDB. Int. J. Intell. Syst. 37, 5691–5724 (2022)

    Google Scholar 

  17. Medina, J.M., Pons, O., Vila, M.A.: Gefred: a generalized model of fuzzy relational databases. Inf. Sci. 76(1), 87–109 (1994)

    Article  Google Scholar 

  18. Psaila, G., Fosci, P.: Toward an analyist-oriented polystore framework for processing JSON geo-data. In: International Conferences on Applied Computing 2018, Budapest; Hungary, 21–23 October 2018. pp. 213–222. IADIS (2018)

    Google Scholar 

  19. Psaila, G., Fosci, P.: J-CO: a platform-independent framework for managing geo-referenced JSON data sets. Electronics 10(5), 621 (2021)

    Article  Google Scholar 

  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Google Scholar 

  21. Zadrozny, S., Kacprzyk, J.: Fquery for access: towards human consistent querying user interface. In: ACM Symposium on Applied Computing, pp. 532–536 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Fosci or Giuseppe Psaila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fosci, P., Psaila, G. (2022). Soft Spatial Querying on JSON Data Sets. In: Chiusano, S., Cerquitelli, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2022. Lecture Notes in Computer Science, vol 13389. Springer, Cham. https://doi.org/10.1007/978-3-031-15740-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15740-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15739-4

  • Online ISBN: 978-3-031-15740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics