Gradient-Based Supported Model Computation in Vector Spaces | SpringerLink
Skip to main content

Gradient-Based Supported Model Computation in Vector Spaces

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2022)

Abstract

We propose a method for computing supported models of normal logic programs in vector spaces using gradient information. First, the program is translated into a definite program and embedded into a matrix representing the program. We introduce a loss function based on the implementation of the immediate consequence operator \(T_P\) by matrix-vector multiplication with a suitable thresholding function, and we incorporate regularization terms into the loss function to avoid undesirable results. The proposed thresholding operation is an almost everywhere differentiable alternative to the non-linear thresholding operation. We report the results of several experiments where our method shows promising performance when used with adaptive gradient update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\gamma ^{\bot }\) is an upper bound on false values that variables can take, and \(\gamma ^{\top }\) is a lower bound on true values. \(\gamma =\frac{n}{n+1}\) where n is the length of the longest positive part in the rules, and \(\tau \) was estimated as described [2].

References

  1. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148. Elsevier (1988)

    Google Scholar 

  2. Aspis, Y., Broda, K., Russo, A., Lobo, J.: Stable and supported semantics in continuous vector spaces. In: KR, pp. 59–68 (2020). https://doi.org/10.24963/kr.2020/7

  3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(76), 2493–2537 (2011)

    MATH  Google Scholar 

  4. Dimopoulos, Y., Sideris, A.: Towards local search for answer sets. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 363–377. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45619-8_25

    Chapter  Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  6. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: DeepProbLog: neural probabilistic logic programming. In: NeurIPS, pp. 3749–3759. Curran Associates, Inc. (2018)

    Google Scholar 

  7. Marek, W., Subrahmanian, V.: The relationship between stable, supported, default and autoepistemic semantics for general logic programs. Theor. Comput. Sci. 103(2), 365–386 (1992). https://doi.org/10.1016/0304-3975(92)90019-C

    Article  MathSciNet  MATH  Google Scholar 

  8. Nguyen, H.D., Sakama, C., Sato, T., Inoue, K.: An efficient reasoning method on logic programming using partial evaluation in vector spaces. J. Log. Comput. 31, 1298–1316 (2021). https://doi.org/10.1093/logcom/exab010

    Article  MathSciNet  MATH  Google Scholar 

  9. Sakama, C., Inoue, K., Sato, T.: Linear algebraic characterization of logic programs. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS (LNAI), vol. 10412, pp. 520–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63558-3_44

    Chapter  Google Scholar 

  10. Sato, T., Kojima, R.: Logical inference as cost minimization in vector spaces. In: El Fallah Seghrouchni, A., Sarne, D. (eds.) IJCAI 2019. LNCS (LNAI), vol. 12158, pp. 239–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56150-5_12

    Chapter  Google Scholar 

  11. Sato, T., Sakama, C., Inoue, K.: From 3-valued semantics to supported model computation for logic programs in vector spaces. In: ICAART, pp. 758–765 (2020)

    Google Scholar 

  12. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set programming. In: IJCAI-PRICAI 2020, pp. 1755–1762 (2020). https://doi.org/10.24963/ijcai.2020/243

  13. Zhao, Y., Lin, F.: Answer set programming phase transition: a study on randomly generated programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 239–253. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24599-5_17

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by JSPS KAKENHI Grant No. JP21H04905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Takemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takemura, A., Inoue, K. (2022). Gradient-Based Supported Model Computation in Vector Spaces. In: Gottlob, G., Inclezan, D., Maratea, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2022. Lecture Notes in Computer Science(), vol 13416. Springer, Cham. https://doi.org/10.1007/978-3-031-15707-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15707-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15706-6

  • Online ISBN: 978-3-031-15707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics