Risk and Exposure of XAI in Persuasion and Argumentation: The case of Manipulation | SpringerLink
Skip to main content

Risk and Exposure of XAI in Persuasion and Argumentation: The case of Manipulation

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2022)

Abstract

In the last decades, Artificial intelligence (AI) systems have been increasingly adopted in assistive (possibly collaborative) decision-making tools. In particular, AI-based persuasive technologies are designed to steer/influence users’ behaviour, habits, and choices to facilitate the achievement of their own - predetermined - goals. Nowadays, the inputs received by the assistive systems leverage heavily AI data-driven approaches. Thus, it is imperative to have transparent and understandable (to the user) both the process leading to the recommendations and the recommendations. The Explainable AI (XAI) community has progressively contributed to “opening the black box”, ensuring the interaction’s effectiveness, and pursuing the safety of the individuals involved. However, principles and methods ensuring the efficacy and information retain on the human have not been introduced yet. The risk is to underestimate the context dependency and subjectivity of the explanations’ understanding, interpretation, and relevance. Moreover, even a plausible (and possibly expected) explanation can lead to an imprecise or incorrect outcome or its understanding. This can lead to unbalanced and unfair circumstances, such as giving a financial advantage to the system owner/provider and the detriment of the user.

This paper highlights that the sole explanations - especially in the context of persuasive technologies - are not self-sufficient to protect users’ psychological and physical integrity. Conversely, explanations could be misused, becoming themselves a tool of manipulation. Therefore, we suggest characteristics safeguarding the explanation from being manipulative and legal principles to be used as criteria for evaluating the operation of XAI systems, both from an ex-ante and ex-post perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.

  2. 2.

    https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.

References

  1. AI, H.: High-level expert group on artificial intelligence (2019)

    Google Scholar 

  2. Albert, E.T.: AI in talent acquisition: a review of AI-applications used in recruitment and selection. Strategic HR Review (2019)

    Google Scholar 

  3. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada, 13–17 May 2019, pp. 1078–1088. International Foundation for Autonomous Agents and Multiagent Systems (2019)

    Google Scholar 

  4. Antonov, A., Kerikmäe, T.: Trustworthy AI as a future driver for competitiveness and social change in the EU. In: Ramiro Troitiño, D., Kerikmäe, T., de la Guardia, R.M., Pérez Sánchez, G.Á. (eds.) The EU in the 21st Century, pp. 135–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38399-2_9

    Chapter  Google Scholar 

  5. Bertolini, A.: Insurance and risk management for robotic devices: identifying the problems. Glob. Jurist 16(3), 291–314 (2016)

    Google Scholar 

  6. Bjørlo, L., Moen, Ø., Pasquine, M.: The role of consumer autonomy in developing sustainable Ai: a conceptual framework. Sustainability 13(4), 2332 (2021)

    Article  Google Scholar 

  7. Blumenthal-Barby, J.S.: Biases and heuristics in decision making and their impact on autonomy. Am. J. Bioeth. 16(5), 5–15 (2016)

    Article  Google Scholar 

  8. Brandeis, L.D.: Other People’s Money and How the Bankers Use It, 1914. Bedford/St. Martin’s, Boston (1995)

    Google Scholar 

  9. Calderai, V.: Consenso informato (2015)

    Google Scholar 

  10. Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Dragoni, A.F., Sturm, A.: Exploring the ambient assisted living domain: a systematic review. J. Ambient Intell. Humanized Comput. 8(2), 239–257 (2017)

    Article  Google Scholar 

  11. Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_1

    Chapter  Google Scholar 

  12. Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. Wiley Interdis. Rev.: Data Min. Knowl. Discov. 11(1), e1391 (2021)

    Google Scholar 

  13. Contissa, G., et al.: Claudette meets GDPR: automating the evaluation of privacy policies using artificial intelligence. Available at SSRN 3208596 (2018)

    Google Scholar 

  14. Coons, C., Weber, M.: Manipulation: Theory and Practice. Oxford University Press, Oxford (2014)

    Google Scholar 

  15. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: Advances in Neural Information Processing Systems, vol. 8 (1995)

    Google Scholar 

  16. Crawford, K., Schultz, J.: Big data and due process: toward a framework to redress predictive privacy harms. BCL Rev. 55, 93 (2014)

    Google Scholar 

  17. De Jong, R.: The retribution-gap and responsibility-loci related to robots and automated technologies: a reply to Nyholm. Sci. Eng. Ethics 26(2), 727–735 (2020). https://doi.org/10.1007/s11948-019-00120-4

    Article  Google Scholar 

  18. Directive, C.: 88/627/eec of 12 december 1988 on the information to be published when a major holding in a listed company is acquired or disposed of. OJ L348, 62–65 (1988)

    Google Scholar 

  19. Directive, T.: Directive 2004/109/EC of the European parliament and of the council of 15 december 2004 on the harmonisation of transparency requirements in relation to information about issuers whose securities are admitted to trading on a regulated market and amending directive 2001/34/ec. OJ L 390(15.12) (2004)

    Google Scholar 

  20. Druce, J., Niehaus, J., Moody, V., Jensen, D., Littman, M.L.: Brittle AI, causal confusion, and bad mental models: challenges and successes in the XAI program. arXiv preprint arXiv:2106.05506 (2021)

  21. Emilien, Gerard, Weitkunat, Rolf, Lüdicke, Frank (eds.): Consumer Perception of Product Risks and Benefits. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50530-5

  22. Fischer, P., Schulz-Hardt, S., Frey, D.: Selective exposure and information quantity: how different information quantities moderate decision makers’ preference for consistent and inconsistent information. J. Pers. Soc. Psychol. 94(2), 231 (2008)

    Article  Google Scholar 

  23. Fox, M., Long, D., Magazzeni, D.: Explainable planning. arXiv preprint arXiv:1709.10256 (2017)

  24. Gandy, O.H.: Coming to Terms with Chance: Engaging Rational Discrimination and Cumulative Disadvantage. Routledge, Milton Park (2016)

    Google Scholar 

  25. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  26. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  27. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI-explainable artificial intelligence. Sci. Rob. 4(37), eaay7120 (2019)

    Google Scholar 

  28. Hasling, D.W., Clancey, W.J., Rennels, G.: Strategic explanations for a diagnostic consultation system. Int. J. Man Mach. Stud. 20(1), 3–19 (1984)

    Article  Google Scholar 

  29. Hellström, T., Bensch, S.: Understandable robots-what, why, and how. Paladyn, J. Behav. Rob. 9(1), 110–123 (2018)

    Article  Google Scholar 

  30. Hoffman, R.R., Klein, G., Mueller, S.T.: Explaining explanation for explainable AI. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 62, pp. 197–201. SAGE Publications Sage CA: Los Angeles, CA (2018)

    Google Scholar 

  31. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)

  32. Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923 (2017)

  33. Jones, M.L.: The right to a human in the loop: political constructions of computer automation and personhood. Soc. Stud. Sci. 47(2), 216–239 (2017)

    Article  Google Scholar 

  34. Kool, W., Botvinick, M.: Mental labour. Nat. Hum. Behav. 2(12), 899–908 (2018)

    Article  Google Scholar 

  35. Kroll, J.A.: The fallacy of inscrutability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2133), 20180084 (2018)

    Article  Google Scholar 

  36. Kroll, J.A.: Accountable algorithms. Ph.D. thesis, Princeton University (2015)

    Google Scholar 

  37. Lam, S.K.T., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of security and privacy issues in recommender systems. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 14–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11766155_2

    Chapter  Google Scholar 

  38. Lanzing, M.: The transparent self. Ethics Inf. Technol. 18(1), 9–16 (2016). https://doi.org/10.1007/s10676-016-9396-y

    Article  Google Scholar 

  39. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  40. Leonard, T.C.: Richard h. thaler, cass r. sunstein, nudge: improving decisions about health, wealth, and happiness (2008)

    Google Scholar 

  41. Li, Y.: Deep reinforcement learning: an overview. arXiv preprint arXiv:1701.07274 (2017)

  42. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  43. Mackenzie, C., Stoljar, N.: Relational Autonomy: Feminist Perspectives on Autonomy, Agency, and The Social Self. Oxford University Press, Oxford (2000)

    Google Scholar 

  44. Margalit, A.: Autonomy: errors and manipulation. Jerusalem Rev. Leg. Stud. 14(1), 102–112 (2016)

    Google Scholar 

  45. Margetts, H.: The internet and transparency. Polit. Q. 82(4), 518–521 (2011)

    Article  Google Scholar 

  46. Margetts, H., Dorobantu, C.: Rethink government with AI (2019)

    Google Scholar 

  47. Matulionyte, R., Hanif, A.: A call for more explainable AI in law enforcement. In: 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 75–80. IEEE (2021)

    Google Scholar 

  48. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mualla, Y., et al.: The quest of parsimonious XAI: a human-agent architecture for explanation formulation. Artif. Intell. 302, 103573 (2022)

    Google Scholar 

  50. Obar, J.A., Oeldorf-Hirsch, A.: The biggest lie on the internet: ignoring the privacy policies and terms of service policies of social networking services. Inf. Commun. Soc. 23(1), 128–147 (2020)

    Article  Google Scholar 

  51. Phillips, P.J., Przybocki, M.: Four principles of explainable AI as applied to biometrics and facial forensic algorithms. arXiv preprint arXiv:2002.01014 (2020)

  52. Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 48(1), 137–141 (2020)

    Article  Google Scholar 

  53. Raz, J.: The Morality of Freedom. Clarendon Press, Oxford (1986)

    Google Scholar 

  54. Regulation, P.: Regulation (EU) 2016/679 of the European parliament and of the council. Regulation (EU) 679, 2016 (2016)

    Google Scholar 

  55. Ribeiro, M.T., Singh, S., Guestrin, C.: why should i trust you? explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  56. Rudinow, J.: Manipulation. Ethics 88(4), 338–347 (1978)

    Article  Google Scholar 

  57. Sadek, I., Rehman, S.U., Codjo, J., Abdulrazak, B.: Privacy and security of IoT based healthcare systems: concerns, solutions, and recommendations. In: Pagán, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera, M.F. (eds.) ICOST 2019. LNCS, vol. 11862, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32785-9_1

    Chapter  Google Scholar 

  58. Skouby, K.E., Lynggaard, P.: Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 874–878. IEEE (2014)

    Google Scholar 

  59. Smuha, N.A.: The EU approach to ethics guidelines for trustworthy artificial intelligence. Comput. Law Rev. Int. 20(4), 97–106 (2019)

    Article  Google Scholar 

  60. Strünck, C., et al.: The maturity of consumers: a myth? towards realistic consumer policy (2012)

    Google Scholar 

  61. Susser, D., Roessler, B., Nissenbaum, H.: Technology, autonomy, and manipulation. Internet Policy Rev. 8(2) (2019)

    Google Scholar 

  62. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  63. Timan, T., Mann, Z.: Data protection in the era of artificial intelligence: trends, existing solutions and recommendations for privacy-preserving technologies. In: Curry, E., Metzger, A., Zillner, S., Pazzaglia, J.-C., García Robles, A. (eds.) The Elements of Big Data Value, pp. 153–175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68176-0_7

    Chapter  Google Scholar 

  64. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Mach. Learn. 13(1), 71–101 (1993)

    Article  Google Scholar 

  65. Union, E.: Directive 2003/6/EC of the European parliament and of the council of 28 January 2003 on insider dealing and market manipulation (market abuse). Off. J. Eur. Union 50, 16–25 (2003)

    Google Scholar 

  66. Veale, M., Borgesius, F.Z.: Demystifying the draft EU artificial intelligence act-analysing the good, the bad, and the unclear elements of the proposed approach. Comput. Law Rev. Int. 22(4), 97–112 (2021)

    Article  Google Scholar 

  67. Wick, M.R., Thompson, W.B.: Reconstructive expert system explanation. Artif. Intell. 54(1–2), 33–70 (1992)

    Article  Google Scholar 

  68. Zarsky, T.: Transparency in data mining: from theory to practice. In: Custers, B., Calders, T., Schermer, B., Zarsky, T. (eds.) Discrimination and privacy in the information society, vol. 3, pp. 301–324. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30487-3_17

    Chapter  Google Scholar 

  69. Zhang, Y., Chen, X., et al.: Explainable recommendation: a survey and new perspectives. Found. Trends® Inf. Retrieval 14(1), 1–101 (2020)

    Google Scholar 

  70. Zhang, Y., Liao, Q.V., Bellamy, R.K.: Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 295–305 (2020)

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the Joint Doctorate grant agreement No 814177 LAST-JD-Rights of Internet of Everything.

This work is partially supported by the Chist-Era grant CHIST-ERA19-XAI-005, and by (i) the Swiss National Science Foundation (G.A. 20CH21_195530), (ii) the Italian Ministry for Universities and Research, (iii) the Luxembourg National Research Fund (G.A. INTER/CHIST/19/14589586), (iv) the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachele Carli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carli, R., Najjar, A., Calvaresi, D. (2022). Risk and Exposure of XAI in Persuasion and Argumentation: The case of Manipulation. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds) Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2022. Lecture Notes in Computer Science(), vol 13283. Springer, Cham. https://doi.org/10.1007/978-3-031-15565-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15565-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15564-2

  • Online ISBN: 978-3-031-15565-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics