Development of an Open-Source 3D WebGIS Framework to Promote Cultural Heritage Dissemination | SpringerLink
Skip to main content

Development of an Open-Source 3D WebGIS Framework to Promote Cultural Heritage Dissemination

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2022)

Abstract

Italian territory is characterized by a conspicuous number of cultural heritage sites to be promoted and preserved. Therefore, regional, and local authorities feel the need to identify an economic and efficient solution to monitor their status and encourage their knowledge among heritage and environmental agencies and the business communities. Usually, Geographical Information Systems have been introduced to store and manage data concerning cultural heritage sites albeit, just in the last few years, its role is becoming more and more important thanks to the development of web applications. These ones allow helping cultural heritage dissemination as well as providing a relevant tool to data treatment. Therefore, in this study, an interactive WebGIS platform aimed at supporting cultural heritage management and enhancement has been developed. In accordance with the standards proposed by the Open Geospatial Consortium and EU directive INSPIRE, Free and Open-Source Software for Geographic information systems were applied to develop proper codes aimed at implementing the whole three-tier configuration. Moreover, a user-friendly interactive interface was also programmed to help IT and non-IT users in stored data management. Although the proposed WebGIS appears as the optimal tool to meet research purposes, further improvements are still needed to handle multiple contacts simultaneously and increase the real-time processing options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UNESCO–World Heritage Center: Operational Guidelines for the Implementation of the World Heritage Convention. UNESCO, Paris (2017)

    Google Scholar 

  2. Capolupo, A., Boccia, L.: Innovative method for linking anthropisation process to vulnerability. World Rev. Sci. Technol. Sustain. Dev. 17(1), 4–22 (2021)

    Article  Google Scholar 

  3. Boccia, L., Capolupo, A., Rigillo, M., Russo, V.: Terrace abandonment hazards in a Mediterranean cultural landscape. J. Hazard. Toxic Radioact. Waste 24(1), 04019034 (2020)

    Article  Google Scholar 

  4. Capolupo, A., Saponaro, M., Fratino, U., Tarantino, E.: Detection of spatio-temporal changes of vegetation in coastal areas subjected to soil erosion issue. Aquat. Ecosyst. Health Manage. 23(4), 491–499 (2020)

    Article  Google Scholar 

  5. Palladino, M., Nasta, P., Capolupo, A., Romano, N.: Monitoring and modelling the role of phytoremediation to mitigate non-point source cadmium pollution and groundwater contamination at field scale. Ital. J. Agron. 13(s1), 59–68 (2018)

    Google Scholar 

  6. De Amicis, R., Conti, G., Girardi, G., Andreolli, M.: 3D WebGIS and visualization issues for architectures and large sites. In: 4th International Workshop “3D-ARCH 2011”: Virtual Reconstruction and Visualization of Complex Architectures (2011)

    Google Scholar 

  7. Capolupo, A., et al.: An interactive WebGIS framework for coastal erosion risk management. J. Mar. Sci. Eng. 9(6), 567 (2021)

    Article  Google Scholar 

  8. Alesheikh, A.A., Helali, H., Behroz, H.A.: Web GIS: technologies and its applications. In: Symposium on Geospatial Theory, Processing and Applications, ISPRS, Ottawa, ON, Canada (2002)

    Google Scholar 

  9. Soto-Garcia, M., Del-Amor-Saavedra, P., Martin-Gorriz, B., Martínez-Alvarez, V.: The role of information and communication technologies in the modernisation of water user associations’ management. Comput. Electron. Agric. 98, 121–130 (2013)

    Article  Google Scholar 

  10. Kuria, E., Kimani, S., Mindila, A.: A framework for web GIS development: a review. Int. J. Comput. Appl. 178, 6–10 (2019). ISSN: 0975-8887

    Google Scholar 

  11. Caradonna, G., Novelli, A., Tarantino, E., Cefalo, R., Fratino, U.: A WebGIS framework for disseminating processed remotely sensed on land cover transformations. Rep. Geod. Geoinf. 100, 27–38 (2016)

    Google Scholar 

  12. Caradonna, G., Tarantino, E., Novelli, A., Figorito, B., Fratino, U.: Un WebGIS per la divulgazione delle analisi dei processi di desertificazione del territorio della Puglia. In: Proceedings of the Atti Conferenza Nazionale Asita, Lecco, Italy, 29 September–1 October 2015, pp. 217–223 (2015)

    Google Scholar 

  13. Kitsiou, D., Patera, A., Tsegas, G., Nitis, T.: A webGIS application to assess seawater quality: a case study in a coastal area in the Northern Aegean Sea. J. Mar. Sci. Eng. 9, 33 (2021)

    Article  Google Scholar 

  14. Wheeler, D.A.: Why Open Source Software/Free Software (OSS/FS) (2007). http://www.dwheeler.com/oss_fs_why.html. Accessed 18 Jan 2020

  15. Huxhold, W.E., Levinsohn, A.G.: Managing geographic information system projects. Cartographica 32, 63 (1995)

    Article  Google Scholar 

  16. Caradonna, G., Figorito, B., Tarantino, E.: Sharing environmental geospatial data through an open source WebGIS. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 556–565. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21470-2_40

    Chapter  Google Scholar 

  17. Caprioli, M., Scognamiglio, A., Strisciuglio, G., Tarantino, E.: Rules and standards for spatial data quality in GIS environments. In: Proceedings of 21st International Cartographic Conference, Durban, South Africa, 10–16 August 2003

    Google Scholar 

  18. Sample, J.T., Shaw, K., Tu, S., Abdelguerfi, M.: Geospatial Services and Applications for the Internet. Springer, Cham (2008). https://doi.org/10.1007/978-0-387-74674-6_1. ISBN-13: 978-0-387-74673-9

  19. Apache Tomcat. http://tomcat.apache.org/. Accessed 10 Mar 2020

  20. Carter, B.: HTML Architecture, a Novel Development System (HANDS). An approach for web development. In: Proceedings of the 2014 Annual Global Online Conference on Information and Computer Technology, Louisville, KY, USA, 3–5 December 2014

    Google Scholar 

  21. Geoserver. http://geoserver.org/. Accessed 3 Mar 2020

  22. Cesium, J.S. https://cesium.com. Accessed 4 Mar 2020

  23. Agrawal, S., Dev Gupta, R.: Development and comparison of open source based web GIS frameworks on WAMP and Apache Tomcat Web Servers. In: Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Suzhou, China, 14–16 May 2014, vol. XL-4 (2014)

    Google Scholar 

  24. Openlayers. https://openlayers.org/. Accessed 3 Mar 2020

  25. Fustes, D., Cantorna, D., Dafonte, C., Arcay, B., Iglesias, A., Manteiga, M.: A cloud-integrated web platform for marine monitoring using GIS and remote sensing. Application to oil spill detection through SAR images. Future Gener. Comput. Syst. 34, 155–160 (2013)

    Article  Google Scholar 

  26. Huang, Z., Xu, Z.: A method of using GeoServer to publish economy geographical information. In: Proceedings of the 2011 International Conference on Control, Automation and Systems Engineering (CASE), Singapore, 30–31 July 2011, pp. 1–4. IEEE, Piscataway (2011)

    Google Scholar 

  27. Brovelli, M.A., et al.: Urban geo big data. In: Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bucharest, Romania, 26–30 August 2019, vol. XLII-4/W14 (2019)

    Google Scholar 

  28. PostgreSQL: The World’s Most Advanced Open Source Relational Database. https://www.postgresql.org/. Accessed 22 Apr 2020

  29. Getbootstrap. https://getbootstrap.com/. Accessed 21 Oct 2019

  30. W3.CSS. https://www.w3schools.com/w3css/. Accessed 20 Oct 2019

  31. Kommana, K.: Implementation of a Geoserver application for GIS data distribution and manipulation. Master’s thesis, Physical Geography and Quaternary Geology, Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden (2013)

    Google Scholar 

  32. Caradonna, G., Frigorito, B., Novelli, A., Tarantino, E., Fratino, U.: Geomatic techniques for disseminating processed remotely sensed open data in an interactive WebGIS. Plurimondi (2017). http://193.204.49.18/index.php/Plurimondi/article/view/47. Accessed 19 May 2021

  33. Geoportale Nazionale. http://www.pcn.minambiente.it/mattm/. Accessed 3 Jan 2020

  34. SIT Puglia. http://www.sit.puglia.it/. Accessed 16 Dec 2019

  35. Rieke‐Zapp, D.H., Wegmann, H., Santel, F., Nearing, M.A.: Digital photogrammetry for measuring soil surface roughness. In: Proceedings of the American Society of Photogrammetry & Remote Sensing 2001 Conference Gateway to the New Millennium’, St. Louis, MO, USA, 23–27 April 2001. American Society of Photogrammetry & Remote Sensing, Bethesda (2001)

    Google Scholar 

  36. Colomina, I., Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97 (2014)

    Article  Google Scholar 

  37. Saponaro, M., Tarantino, E., Fratino, U.: Generation of 3D surface models from UAV imagery varying flight patterns and processing parameters. In: AIP Conference Proceedings, vol. 2116, no. 1, p. 280009. AIP Publishing LLC, July 2019

    Google Scholar 

  38. Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. Appl. Geomat. 6(1), 1–15 (2013). https://doi.org/10.1007/s12518-013-0120-x

    Article  Google Scholar 

  39. Manfreda, S., et al.: On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 10, 641 (2018). https://doi.org/10.3390/rs10040641

    Article  Google Scholar 

  40. Saponaro, M., Capolupo, A., Caporusso, G., Borgogno Mondino, E., Tarantino, E.: Predicting the accuracy of photogrammetric 3D reconstruction from camera calibration parameters through a multivariate statistical approach. In: XXIV ISPRS Congress, vol. 43, pp. 479–486. ISPRS (2020)

    Google Scholar 

  41. Capolupo, A., Maltese, A., Saponaro, M., Costantino, D.: Integration of terrestrial laser scanning and UAV-SFM technique to generate a detailed 3D textured model of a heritage building. In: Proceedings SPIE 11534, Earth Resources and Environmental Remote Sensing/GIS Applications XI, 115340Z, 20 September 2020. https://doi.org/10.1117/12.2574034

  42. Saponaro, M., Capolupo, A., Turso, A., Tarantino, E.: Cloud-to-cloud assessment of UAV and TLS 3D reconstructions of cultural heritage monuments: the case of Torre Zozzoli. In: Proceedings SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), 1152408, 26 August 2020. https://doi.org/10.1117/12.2570771

  43. James, M.R., Robson, S., d’Oleire-Oltmanns, S., Niethammer, U.: Optimizing UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280, 51–66 (2017)

    Article  Google Scholar 

  44. Agisoft, L.L.C.: Agisoft PhotoScan User Manual: Professional Edition, Petersburg, Russia (2014). https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf. Accessed 12 Dec 2021

  45. Gruen, A., Beyer, H.A.: System calibration through self calibration. In: Gruen, A., Huang, T.S. (eds.) Calibration and Orientation of Cameras in Computer Vision, pp. 163–194. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04567-1_7

    Chapter  Google Scholar 

  46. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  47. Saponaro, M., Capolupo, A., Tarantino, E., Fratino, U.: Comparative analysis of different UAV-based photogrammetric processes to improve product accuracies. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 225–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_18

    Chapter  Google Scholar 

  48. Haynes, D., Ray, S., Manson, S.M., Soni, A.: High performance analysis of big spatial data. In: Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015

    Google Scholar 

  49. Ružicka, J.: Comparing speed of Web Map Service with GeoServer on ESRI Shapefile and PostGIS. Geoinformatics 15, 3–9 (2016)

    Google Scholar 

  50. Geoext3. http://geoext.github.io/geoext3/. Accessed 16 May 2020

  51. Github. https://github.com/google/draco. Accessed 16 May 2020

  52. WebP. https://developers.google.com/speed/webp. Accessed 16 May 2020

  53. Shehata, O.: Faster and Smaller 3D Tiles with WebP Image Compression. Cesium Blog (2019). https://cesium.com/blog/2019/02/12/faster-3d-tiles-streaming-webp/. Accessed 12 Sept 2019

Download references

Acknowledgments

This research was conducted within the project “Programma Operativo Nazionale Ricerca e Innovazione 2014-2020—Fondo Sociale Europeo, Azione I.2 “Attrazione e Mobilità Internazionale dei Ricercatori”—Avviso D.D. n 407 del 27/02/2018” CUP: D94I18000220007—cod. AIM1895471—2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Capolupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capolupo, A., Monterisi, C., Tarantino, E. (2022). Development of an Open-Source 3D WebGIS Framework to Promote Cultural Heritage Dissemination. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2022. Lecture Notes in Computer Science, vol 13446. Springer, Cham. https://doi.org/10.1007/978-3-031-15553-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15553-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15552-9

  • Online ISBN: 978-3-031-15553-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics