A Two-Level Hybrid Based Genetic Algorithm to Solve the Clustered Shortest-Path Tree Problem Using the Prüfer Code | SpringerLink
Skip to main content

A Two-Level Hybrid Based Genetic Algorithm to Solve the Clustered Shortest-Path Tree Problem Using the Prüfer Code

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2022)

Abstract

The clustered shortest-path tree (CluSPT) problem is a generalization of the popular shortest path problem, in which, given a graph with the set of vertices divided into a given set of clusters, we look for a shortest-path spanning tree from a predefined source vertex to all the other vertices of the graph, with the property that every cluster should generate a connected subgraph. In this paper, we describe a two-level hybrid algorithm to solve the CluSPT problem, in which a framework with a macro-level genetic algorithm (GA) used to generate trees connecting the clusters using Prüfer code, is combined with a micro-level algorithm based on dynamic programming (DP) that determines the best corresponding feasible solution of the CluSPT problem associated to a given tree spanning the clusters. Finally, some preliminary computational results are stated on a set of 40 standard benchmark non-euclidean instances from the literature to illustrate the performance of our developed two-level hybrid algorithm. The obtained computational results demonstrate that our novel hybrid algorithm is highly competitive against the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binh, H.T.T., Thanh, P.D., Thang, T.B.: New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm. Knowl.-Based Syst. 180, 12–25 (2019)

    Article  Google Scholar 

  2. Huynh Thi Thanh, B., Pham Dinh, T.: Two levels approach based on multifactorial optimization to solve the clustered shortest path tree problem. Evol. Intell. 15(1), 185–213 (2020). https://doi.org/10.1007/s12065-020-00501-w

    Article  Google Scholar 

  3. Cosma, O., Pop, P.C., Zelina, I.: An effective genetic algorithm for solving the clustered shortest-path tree problem. IEEE Access 9, 15570–15591 (2021)

    Article  Google Scholar 

  4. Cosma, O., Pop, P.C., Zelina, I.: A novel genetic algorithm for solving the clustered shortest-path tree problem. Carpathian J. Math. 36(3), 401–414 (2020)

    Article  MathSciNet  Google Scholar 

  5. D’Emidio, M., Forlizzi, L., Frigioni, D., Leucci, S., Proietti, G.: On the clustered shortest-path tree problem. In: Proceedings of Italian Conference on Theoretical Computer Science, pp. 263–268 (2016)

    Google Scholar 

  6. D’Emidio, M., Forlizzi, L., Frigioni, D., Leucci, S., Proietti, G.: Hardness, approximability and fixed-parameter tractability of the clustered shortest-path tree problem. J. Comb. Optim. 38, 165–184 (2019). https://doi.org/10.1007/s10878-018-00374-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Demange, M., Monnot, J., Pop, P.C., Ries, B.: On the complexity of the selective graph coloring problem in some special classes of graphs. Theor. Comput. Sci. 540–541, 82–102 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Feremans, C., Labbe, M., Laporte, G.: Generalized network design problems. Eur. J. Oper. Res. 148(1), 1–13 (2003)

    Article  MathSciNet  Google Scholar 

  9. Fidanova, S., Pop, P.C.: An improved hybrid ant-local search for the partition graph coloring problem. J. Comput. Appl. Math. 293, 55–61 (2016)

    Article  MathSciNet  Google Scholar 

  10. Fischetti, M., Salazar-Gonzales, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

    Article  MathSciNet  Google Scholar 

  11. Ghiani, G., Improta, G.: An efficient transformation of the generalized vehicle routing problem. Eur. J. Oper. Res. 122, 11–17 (2000)

    Article  MathSciNet  Google Scholar 

  12. Hanh, P.T.H., Thanh, P.D., Binh, H.T.T.: Evolutionary algorithm and multifactorial evolutionary algorithm on clustered shortest-path tree problem. Inf. Sci. 553, 280–304 (2021)

    Article  MathSciNet  Google Scholar 

  13. Mestria, M., Ochi, L.S., de Lima Martins, S.: GRASP with path relinking for the symmetric Euclidean clustered traveling salesman problem. Comput. Oper. Res. 40(12), 3218–3229 (2013)

    Article  MathSciNet  Google Scholar 

  14. Myung, Y.S., Lee, C.H., Tcha, D.W.: On the generalized minimum spanning tree problem. Networks 26, 231–241 (1995)

    Article  MathSciNet  Google Scholar 

  15. Pop, P.C., Matei, O., Sabo, C., Petrovan, A.: A two-level solution approach for solving the generalized minimum spanning tree problem. Eur. J. Oper. Res. 265(2), 478–487 (2018)

    Article  MathSciNet  Google Scholar 

  16. Pop, P.C., Fuksz, L., Horvat Marc, A., Sabo, C.: A novel two-level optimization approach for clustered vehicle routing problem. Comput. Ind. Eng. 115, 304–318 (2018)

    Article  Google Scholar 

  17. Pop, P.C.: The generalized minimum spanning tree problem: an overview of formulations, solution procedures and latest advances. Eur. J. Oper. Res. 283(1), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  18. Pop, P.C.: Generalized Network Design Problems. Modeling and Optimization. De Gruyter Series in Discrete Mathematics and Applications, Germany (2012)

    Google Scholar 

  19. Thanh, P.D.: CluSPT instances, Mendeley Data v2. https://doi.org/10.17632/b4gcgybvt6.2

  20. Thanh, P.D., Binh, H.T.T., Dac, D.D., Binh Long N., Hai Phong, L.M.: A Heuristic Based on Randomized Greedy Algorithms for the Clustered Shortest-Path Tree Problem. In Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 2915–2922 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrică C. Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrovan, A., Pop, P.C., Sabo, C., Zelina, I. (2022). A Two-Level Hybrid Based Genetic Algorithm to Solve the Clustered Shortest-Path Tree Problem Using the Prüfer Code. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15471-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15470-6

  • Online ISBN: 978-3-031-15471-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics