On Truncated Series Involved in Exponential-Logarithmic Solutions of Truncated LODEs | SpringerLink
Skip to main content

On Truncated Series Involved in Exponential-Logarithmic Solutions of Truncated LODEs

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2022)

Abstract

Previously, the authors proposed algorithms for finding exponential-logarithmic solutions of linear ordinary differential equations with coefficients in the form of series, for which only a finite number of initial terms is known. Each solution involves a finite set of power series, for which the maximum possible number of terms is calculated. Below, these algorithms are supplemented with the option to confirm the impossibility of obtaining a larger number of terms in the series without using additional information about the given equation. Such a confirmation has the form of a counterexample to the assumption that it is possible to obtain additional terms of the series involved in the solution that are invariant under all prolongations of the given equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramov, S.A., Barkatou, M.A.: Computable infinite power series in the role of coefficients of linear differential systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_1

    Chapter  Google Scholar 

  2. Abramov, S., Barkatou, M., Khmelnov, D.: On full rank differential systems with power series coefficients. J. Symb. Comput. 68, 120–137 (2015)

    Article  MathSciNet  Google Scholar 

  3. Abramov, S.A., Barkatou, M.A., Pflügel, E.: Higher-order linear differential systems with truncated coefficients. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 10–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23568-9_2

    Chapter  Google Scholar 

  4. Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: ISSAC 1995: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 290–296 (1995)

    Google Scholar 

  5. Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems with power series coefficients. Program. Comput. Softw. 40(2), 98–106 (2014). https://doi.org/10.1134/S0361768814020029

    Article  MathSciNet  MATH  Google Scholar 

  6. Abramov, S., Khmelnov, D., Ryabenko, A.: Laurent solutions of linear ordinary differential equations with coefficients in the form of truncated power series. In: Computer Algebra: 3rd International Conference Materials, Moscow, 17–21 June 2019, International Conference Materials, pp. 75–82 (2019)

    Google Scholar 

  7. Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching Laurent and regular solutions of linear differential equations with the coefficients in the form of truncated power series. Program. Comput. Softw. 46, 67–75 (2020)

    Article  MathSciNet  Google Scholar 

  8. Abramov, S.A., Ryabenko, A.A., Khmelnov, D.E.: Procedures for searching local solutions of linear differential systems with infinite power series in the role of coefficients. Program. Comput. Softw. 42(2), 55–64 (2016). https://doi.org/10.1134/S036176881602002X

    Article  MathSciNet  MATH  Google Scholar 

  9. Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A.: The TruncatedSeries package for solving linear ordinary differential equations having truncated series coefficients. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds.) MC 2020. CCIS, vol. 1414, pp. 19–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81698-8_2

  10. Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A.: Truncated and infinite power series in the role of coefficients of linear ordinary differential equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 63–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_4

    Chapter  Google Scholar 

  11. Abramov, S., Petkovšek, M.: Special power series solutions of linear differential equations. In: Proceedings FPSAC 1996, pp. 1–8 (1996)

    Google Scholar 

  12. Abramov, S., Ryabenko, A., Khmelnov, D.: Exhaustive use of information on an equation with truncated coefficients. Program. Comput. Softw. 48, 116–124 (2022). https://doi.org/10.1134/S0361768822020025

    Article  MathSciNet  Google Scholar 

  13. Abramov, S., Ryabenko, A., Khmelnov, D.: Linear ordinary differential equations and truncated series. Comput. Math. Math. Phys. 59, 1649–1659 (2019). https://doi.org/10.1134/S0965542519100026

    Article  MathSciNet  MATH  Google Scholar 

  14. Abramov, S., Ryabenko, A., Khmelnov, D.: Regular solutions of linear ordinary differential equations and truncated series. Comput. Math. Math. Phys. 60, 1–14 (2020). https://doi.org/10.1134/S0965542520010029

    Article  MathSciNet  MATH  Google Scholar 

  15. Abramov, S., Ryabenko, A., Khmelnov, D.: Procedures for constructing truncated solutions of linear differential equations with infinite and truncated power series in the role of coefficients. Program. Comput. Softw. 47, 144–152 (2021). https://doi.org/10.1134/S036176882102002X

    Article  MathSciNet  MATH  Google Scholar 

  16. Abramov, S., Ryabenko, A., Khmelnov, D.: Truncated series and formal exponential-logarithmic solutions of linear ordinary differential equations. Comput. Math. Math. Phys. 60, 1609–1620 (2020). https://doi.org/10.1134/S0965542520100024

    Article  MathSciNet  MATH  Google Scholar 

  17. Barkatou, M.A.: Rational Newton algorithm for computing formal solutions of linear differential equations. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 183–195. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51084-2_17

    Chapter  Google Scholar 

  18. Barkatou, M., Richard-Jung, F.: Formal solutions of linear differential and difference equations. Program. Comput. Software 23(1), 17–30 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Bruno, A.D.: Asymptotic behavior and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 31–80 (2004)

    Article  MathSciNet  Google Scholar 

  20. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Krieger, Malabar (1984)

    MATH  Google Scholar 

  21. Frobenius, G.: Über die Integration der linearen Differentialgleichungen durch Reihen. J. für die reine und angewandte Mathematik 76, 214–235 (1873)

    Google Scholar 

  22. Heffter, L.: Einleitung in die Theorie der linearen Differentialgleichungen. Teubner, Leipzig (1894)

    MATH  Google Scholar 

  23. Ince, E.: Ordinary Differential Equations. Longmans, London, New York, Bombay (1926)

    Google Scholar 

  24. Khmelnov, D., Ryabenko, A., Abramov, S.: Automatic confirmation of exhaustive use of information on a given equation. In: Computer Algebra: 4th International Conference Materials, pp. 69–72. MAKS Press, Moscow (2021) (2021)

    Google Scholar 

  25. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for singular differential equations. Linear Algebra Appl. 72, 1–46 (1985)

    Article  MathSciNet  Google Scholar 

  26. Malgrange, B.: Sur la réduction formelle des équations différentielles a singularités irrégulières. Université Scientifique et Médicale de Grenoble (1979)

    Google Scholar 

  27. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, vol. 1. Teubner, Leipzig (1895)

    MATH  Google Scholar 

  28. Singer, M.F.: Formal solutions of differential equations. J. Symb. Comput. 10(1), 59–94 (1990)

    Article  MathSciNet  Google Scholar 

  29. Tournier, E.: Solutions formelles d’équations différentielles. Le logiciel de calcul formel DESIR. Étude théorique et réalisation. Thèse d’Etat, Université de Grenoble (1987)

    Google Scholar 

  30. TruncatedSeries website. http://www.ccas.ru/ca/TruncatedSeries. Accessed 11 May 2022

Download references

Acknowledgments

The authors are grateful to anonymous referees for their helpful comments, as well as Maplesoft (Waterloo, Canada) for consultations and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A. (2022). On Truncated Series Involved in Exponential-Logarithmic Solutions of Truncated LODEs. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2022. Lecture Notes in Computer Science, vol 13366. Springer, Cham. https://doi.org/10.1007/978-3-031-14788-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14788-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14787-6

  • Online ISBN: 978-3-031-14788-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics