Abstract
Previously, the authors proposed algorithms for finding exponential-logarithmic solutions of linear ordinary differential equations with coefficients in the form of series, for which only a finite number of initial terms is known. Each solution involves a finite set of power series, for which the maximum possible number of terms is calculated. Below, these algorithms are supplemented with the option to confirm the impossibility of obtaining a larger number of terms in the series without using additional information about the given equation. Such a confirmation has the form of a counterexample to the assumption that it is possible to obtain additional terms of the series involved in the solution that are invariant under all prolongations of the given equation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramov, S.A., Barkatou, M.A.: Computable infinite power series in the role of coefficients of linear differential systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_1
Abramov, S., Barkatou, M., Khmelnov, D.: On full rank differential systems with power series coefficients. J. Symb. Comput. 68, 120–137 (2015)
Abramov, S.A., Barkatou, M.A., Pflügel, E.: Higher-order linear differential systems with truncated coefficients. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 10–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23568-9_2
Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: ISSAC 1995: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 290–296 (1995)
Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems with power series coefficients. Program. Comput. Softw. 40(2), 98–106 (2014). https://doi.org/10.1134/S0361768814020029
Abramov, S., Khmelnov, D., Ryabenko, A.: Laurent solutions of linear ordinary differential equations with coefficients in the form of truncated power series. In: Computer Algebra: 3rd International Conference Materials, Moscow, 17–21 June 2019, International Conference Materials, pp. 75–82 (2019)
Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching Laurent and regular solutions of linear differential equations with the coefficients in the form of truncated power series. Program. Comput. Softw. 46, 67–75 (2020)
Abramov, S.A., Ryabenko, A.A., Khmelnov, D.E.: Procedures for searching local solutions of linear differential systems with infinite power series in the role of coefficients. Program. Comput. Softw. 42(2), 55–64 (2016). https://doi.org/10.1134/S036176881602002X
Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A.: The TruncatedSeries package for solving linear ordinary differential equations having truncated series coefficients. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds.) MC 2020. CCIS, vol. 1414, pp. 19–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81698-8_2
Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A.: Truncated and infinite power series in the role of coefficients of linear ordinary differential equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 63–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_4
Abramov, S., Petkovšek, M.: Special power series solutions of linear differential equations. In: Proceedings FPSAC 1996, pp. 1–8 (1996)
Abramov, S., Ryabenko, A., Khmelnov, D.: Exhaustive use of information on an equation with truncated coefficients. Program. Comput. Softw. 48, 116–124 (2022). https://doi.org/10.1134/S0361768822020025
Abramov, S., Ryabenko, A., Khmelnov, D.: Linear ordinary differential equations and truncated series. Comput. Math. Math. Phys. 59, 1649–1659 (2019). https://doi.org/10.1134/S0965542519100026
Abramov, S., Ryabenko, A., Khmelnov, D.: Regular solutions of linear ordinary differential equations and truncated series. Comput. Math. Math. Phys. 60, 1–14 (2020). https://doi.org/10.1134/S0965542520010029
Abramov, S., Ryabenko, A., Khmelnov, D.: Procedures for constructing truncated solutions of linear differential equations with infinite and truncated power series in the role of coefficients. Program. Comput. Softw. 47, 144–152 (2021). https://doi.org/10.1134/S036176882102002X
Abramov, S., Ryabenko, A., Khmelnov, D.: Truncated series and formal exponential-logarithmic solutions of linear ordinary differential equations. Comput. Math. Math. Phys. 60, 1609–1620 (2020). https://doi.org/10.1134/S0965542520100024
Barkatou, M.A.: Rational Newton algorithm for computing formal solutions of linear differential equations. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 183–195. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51084-2_17
Barkatou, M., Richard-Jung, F.: Formal solutions of linear differential and difference equations. Program. Comput. Software 23(1), 17–30 (1997)
Bruno, A.D.: Asymptotic behavior and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 31–80 (2004)
Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Krieger, Malabar (1984)
Frobenius, G.: Über die Integration der linearen Differentialgleichungen durch Reihen. J. für die reine und angewandte Mathematik 76, 214–235 (1873)
Heffter, L.: Einleitung in die Theorie der linearen Differentialgleichungen. Teubner, Leipzig (1894)
Ince, E.: Ordinary Differential Equations. Longmans, London, New York, Bombay (1926)
Khmelnov, D., Ryabenko, A., Abramov, S.: Automatic confirmation of exhaustive use of information on a given equation. In: Computer Algebra: 4th International Conference Materials, pp. 69–72. MAKS Press, Moscow (2021) (2021)
Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for singular differential equations. Linear Algebra Appl. 72, 1–46 (1985)
Malgrange, B.: Sur la réduction formelle des équations différentielles a singularités irrégulières. Université Scientifique et Médicale de Grenoble (1979)
Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, vol. 1. Teubner, Leipzig (1895)
Singer, M.F.: Formal solutions of differential equations. J. Symb. Comput. 10(1), 59–94 (1990)
Tournier, E.: Solutions formelles d’équations différentielles. Le logiciel de calcul formel DESIR. Étude théorique et réalisation. Thèse d’Etat, Université de Grenoble (1987)
TruncatedSeries website. http://www.ccas.ru/ca/TruncatedSeries. Accessed 11 May 2022
Acknowledgments
The authors are grateful to anonymous referees for their helpful comments, as well as Maplesoft (Waterloo, Canada) for consultations and discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A. (2022). On Truncated Series Involved in Exponential-Logarithmic Solutions of Truncated LODEs. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2022. Lecture Notes in Computer Science, vol 13366. Springer, Cham. https://doi.org/10.1007/978-3-031-14788-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-14788-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14787-6
Online ISBN: 978-3-031-14788-3
eBook Packages: Computer ScienceComputer Science (R0)