Evolutionary Approaches to Improving the Layouts of Instance-Spaces | SpringerLink
Skip to main content

Evolutionary Approaches to Improving the Layouts of Instance-Spaces

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

We propose two new methods for evolving the layout of an instance-space. Specifically we design three different fitness metrics that seek to: (i) reward layouts which place instances won by the same solver close in the space; (ii) reward layouts that place instances won by the same solver and where the solver has similar performance close together; (iii) simultaneously reward proximity in both class and distance by combining these into a single metric. Two optimisation algorithms that utilise these metrics to evolve a model which outputs the coordinates of instances in a 2d space are proposed: (1) a multi-tree version of GP (2) a neural network with the weights evolved using an evolution strategy. Experiments in the TSP domain show that both new methods are capable of generating layouts in which subsequent application of a classifier provides considerably improved accuracy when compared to existing projection techniques from the literature, with improvements of over 10% in some cases. Visualisation of the the evolved layouts demonstrates that they can capture some aspects of the performance gradients across the space and highlight regions of strong performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Similar trends are observed in the plots obtained in the full feature space but not shown due to space limitations.

References

  1. Deap: Distributed evolutionary algorithms in Python. https://deap.readthedocs.io/en/master/

  2. Matilda: Melbourne algorithm test instance library with data analytics. https://matilda.unimelb.edu.au/matilda/

  3. Umap: Uniform manifold approximation and projection for dimension reduction. https://umap-learn.readthedocs.io/en/latest/index.html

  4. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  5. Hasselmann, K., Ligot, A., Ruddick, J., Birattari, M.: Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  6. Le Goff, L.K., et al.: Sample and time efficient policy learning with CMA-ES and Bayesian optimisation. In: Artificial Life Conference Proceedings, pp. 432–440. MIT Press (2020)

    Google Scholar 

  7. Lensen, A., Xue, B., Zhang, M.: Can genetic programming do manifold learning too? In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 114–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_8

    Chapter  Google Scholar 

  8. Lensen, A., Xue, B., Zhang, M.: Genetic programming for manifold learning: preserving local topology. IEEE Trans. Evol. Comput. (2021)

    Google Scholar 

  9. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. arXiv preprint arXiv:1604.07269 (2016)

  10. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  11. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for machine learning classification. Mach. Learn. 107(1), 109–147 (2017). https://doi.org/10.1007/s10994-017-5629-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Partridge, M., Calvo, R.A.: Fast dimensionality reduction and simple PCA. Intell. Data Anal. 2(3), 203–214 (1998)

    Article  Google Scholar 

  13. Schofield, F., Lensen, A.: Using genetic programming to find functional mappings for UMAP embeddings. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 704–711. IEEE (2021)

    Google Scholar 

  14. Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures of algorithm performance across instance space. Comput. Oper. Res. 45, 12–24 (2014)

    Article  MathSciNet  Google Scholar 

  15. Smith-Miles, K., Bowly, S.: Generating new test instances by evolving in instance space. Comput. Oper. Res. 63, 102–113 (2015)

    Article  MathSciNet  Google Scholar 

  16. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_29

    Chapter  Google Scholar 

  17. Smith-Miles, K., Lopes, L.: Generalising algorithm performance in instance space: a timetabling case study. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 524–538. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_41

    Chapter  Google Scholar 

  18. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

    Article  MathSciNet  Google Scholar 

  19. Wang, Y., Huang, H., Rudin, C., Shaposhnik, Y.: Understanding how dimension reduction tools work: an empirical approach to deciphering t-SNE, UMAP, TriMap, and PaCMAP for data visualization. J. Mach. Learn. Res. 22(201), 1–73 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

Hart gratefully acknowledges the support EPSRC EP/V026534/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Hart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sim, K., Hart, E. (2022). Evolutionary Approaches to Improving the Layouts of Instance-Spaces. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics