An End-to-End Object Detector with Spatiotemporal Context Learning for Machine-Assisted Rehabilitation | SpringerLink
Skip to main content

An End-to-End Object Detector with Spatiotemporal Context Learning for Machine-Assisted Rehabilitation

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Recently, object detection technologies applied in rehabilitation systems are mainly based on the ready-made technology of CNNs. This paper proposes an DETR-based detector which is an end-to-end object detector with spatiotemporal context learning for machine-assisted rehabilitation. To improve the performance of small object detection, first, the multi-level features of the RepVGG are fused with the SE attention mechanism to build a SEFP-RepVGG. To make the encoder-decoder structure more suitable, next, the value of the encoder is generated by using feature maps with more detailed information than key/query. To reduce computation, Patch Merging is finally imported to modify the feature map scale of the input encoder. The proposed detector has higher real-time performance than DETR and obtains the competitive detection accuracy on the ImageNet VID benchmark. Some typical samples from the NTU RGB-D 60 dataset are selected to build a new limb-detection dataset for further evaluation. The results show the effectiveness of the proposed detector in the rehabilitation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kadu, A., Singh, M.: Comparative analysis of e-health care telemedicine system based on internet of medical things and artificial intelligence. In: 2nd International Conference on Smart Electronics and Communication (ICOSEC), pp. 1768–1775 (2021). https://doi.org/10.1109/ICOSEC51865.2021.9591941

  2. Debnath, B., O’Brien, M., Yamaguchi, M., Behera, A.: A review of computer vision-based approaches for physical rehabilitation and assessment. Multimedia Syst. 28(1), 209–239 (2021). https://doi.org/10.1007/s00530-021-00815-4

    Article  Google Scholar 

  3. Chae, S.H., Kim, Y., Lee, K.S., Park, H.S.: Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: prospective comparative study. JMIR Mhealth Uhealth 8(7), e17216 (2020). https://doi.org/10.2196/17216

    Article  Google Scholar 

  4. Chiang, A.T., Chen, Q., Wang, Y., Fu, M.R.: Kinect-based in-home exercise system for lymphatic health and lymphedema intervention. IEEE J. Transl. Eng. Health Med. 6, 1–13 (2018). https://doi.org/10.1109/JTEHM.2018.2859992

    Article  Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  6. Redmon, J.,, Farhadi, A.: YOLOv3: an incremental improvement. eprint arXiv:1804.02767 (2018). https://doi.org/10.48550/arXiv.1804.02767

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  8. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style ConvNets great again. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13728–13737. IEEE, New York (2021). https://doi.org/10.1109/CVPR46437.2021.01352

  9. Zhang, X., Gao, Y., Ye, F., Liu, Q., Zhang, K.: An approach to improve SSD through skip connection of multiscale feature maps. Comput. Intell. Neurosci. 2020, 13 (2020). https://doi.org/10.1155/2020/2936920

    Article  Google Scholar 

  10. Yao, Z., Ai, J., Li, B., Zhang, C.: Efficient DETR: improving end-to-end object detector with dense prior. eprint arXiv: 2104.01318 (2021). https://doi.org/10.48550/arxiv.2104.01318

  11. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. eprint arXiv: 1907.00235 (2019). https://doi.org/10.48550/arxiv.1907.00235

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002. IEEE, New York (2021). https://doi.org/10.48550/arxiv.2103.14030

  13. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  14. Shahroudy, A., Liu, J., Ng, T.-T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1010–1019. IEEE, New York (2016). https://doi.org/10.1109/CVPR.2016.115

  15. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. eprint arXiv: 2010.04159 (2020). https://doi.org/10.48550/arxiv.2010.04159

  16. Meng, D., et al.: Conditional DETR for fast training convergence. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3631–3640. IEEE, New York (2021). https://doi.org/10.1109/ICCV48922.2021.00363

  17. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. IEEE, New York (2017). https://doi.org/10.1109/CVPR.2017.634

  18. Howard, A., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. eprint arXiv: 1704.04861 (2017). https://doi.org/10.48550/arxiv.1704.04861

  19. Child, R., Gray, S., Radford, A., Sutskever, I: Generating long sequences with sparse transformers. eprint arXiv: 1904.10509 (2019). https://doi.org/10.48550/arxiv.1904.10509

  20. Zhou, N.: Research on video object detection based on temporal characteristics. J. China Acad. Electron. Inf. 16(02), 157–164 (2021)

    Google Scholar 

  21. Chai, Y.: Patchwork: a patch-wise attention network for efficient object detection and segmentation in video streams. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3414–3423. IEEE, New York (2019). https://doi.org/10.1109/ICCV.2019.00351

  22. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10778–10787. IEEE, New York (2019). https://doi.org/10.1109/CVPR42600.2020.0107

  23. Chen, X., Yu, J., Wu, Z.: Temporally identity-aware SSD with attentional LSTM. IEEE Trans. Cybern. 50(6), 2674–2686 (2020). https://doi.org/10.1109/TCYB.2019.2894261

    Article  Google Scholar 

  24. Kang, K., et al.: Object detection in videos with tubelet proposal networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 889–897. IEEE, New York (2017). https://doi.org/10.1109/CVPR.2017.101

Download references

Acknowledgments

The authors would like to acknowledge the support from the AiBle project co-financed by the European Regional Development Fund, National Key R&D Program of China (Grant No. 2018YFB1304600), CAS Interdisciplinary Innovation Team (Grant No. JCTD-2018-11), Liaoning Province Higher Education Innovative Talents Program Support Project (Grant No. LR2019058), and National Natural Science Foundation of China (grant No. 52075530, 51575412, and 62006204). LiaoNing Province Joint Open Fund for Key Scientific and Technological Innovation Bases (Grant No. 2021-KF-12-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Gao, H., Ma, T., Yu, J. (2022). An End-to-End Object Detector with Spatiotemporal Context Learning for Machine-Assisted Rehabilitation. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics