Overview of the ImageCLEF 2022: Multimedia Retrieval in Medical, Social Media and Nature Applications | SpringerLink
Skip to main content

Overview of the ImageCLEF 2022: Multimedia Retrieval in Medical, Social Media and Nature Applications

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2022)

Abstract

This paper presents an overview of the ImageCLEF 2022 lab that was organized as part of the Conference and Labs of the Evaluation Forum – CLEF Labs 2022. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2022, the 20th edition of ImageCLEF runs four main tasks: (i) a medical task that groups two previous tasks, i.e., caption analysis and tuberculosis prediction, (ii) a social media aware task on estimating potential real-life effects of online image sharing, (iii) a nature coral task about segmenting and labeling collections of coral reef images, and (iv) a new fusion task addressing the design of late fusion schemes for boosting the performance, with two real-world applications: image search diversification (retrieval) and prediction of visual interestingness (regression). The benchmark campaign received the participation of over 25 groups submitting more than 258 runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.imageclef.org/.

  2. 2.

    https://www.aicrowd.com/.

  3. 3.

    https://scholar.google.com/.

  4. 4.

    https://www.imageclef.org/2022/.

  5. 5.

    https://www.imageclef.org/2022/.

  6. 6.

    https://www.aicrowd.com/.

  7. 7.

    https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

  8. 8.

    http://host.robots.ox.ac.uk/pascal/VOC/.

  9. 9.

    https://www.ncei.noaa.gov/.

  10. 10.

    https://coralnet.ucsd.edu/.

References

  1. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(Database-Issue), 267–270 (2004). https://doi.org/10.1093/nar/gkh061

  2. Carrillo-García, D.M., Kolb, M.: Indicator framework for monitoring ecosystem integrity of coral reefs in the Western Caribbean. Ocean Sci. J. 1–24 (2022)

    Google Scholar 

  3. Chamberlain, J., Campello, A., Wright, J.P., Clift, L.G., Clark, A., García Seco de Herrera, A.: Overview of ImageCLEFcoral 2019 task. In: CLEF 2019 Working Notes. CEUR Workshop Proceedings. CEUR-WS.org (2019)

    Google Scholar 

  4. Chamberlain, J., Campello, A., Wright, J.P., Clift, L.G., Clark, A., García Seco de Herrera, A.: Overview of the ImageCLEFcoral 2020 task: automated coral reef image annotation. In: CLEF 2020 Working Notes. CEUR Workshop Proceedings. CEUR-WS.org (2020)

    Google Scholar 

  5. Chamberlain, J., García Seco de Herrera, A., Campello, A., Clark, A.: ImageCLEFcoral task: coral reef image annotation and localisation. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the 13th International Conference of the CLEF Association (CLEF 2022). LNCS. Springer, Cham (2022)

    Google Scholar 

  6. Chamberlain, J., García Seco de Herrera, A., Campello, A., Clark, A., Oliver, T.A., Moustahfid, H.: Overview of the ImageCLEFcoral 2021 task: coral reef image annotation of a 3D environment. In: CLEF 2021 Working Notes. CEUR Workshop Proceedings, Bucharest, Romania, 21–24 September 2021. CEUR-WS.org (2021)

    Google Scholar 

  7. Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 cross-language image retrieval track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005). https://doi.org/10.1007/11519645_59

    Chapter  Google Scholar 

  8. Clough, P., Sanderson, M.: The CLEF 2003 cross language image retrieval task. In: Proceedings of the Cross Language Evaluation Forum (CLEF 2003) (2004)

    Google Scholar 

  9. Constantin, M.G., Ştefan, L.-D., Ionescu, B.: DeepFusion: deep ensembles for domain independent system fusion. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12572, pp. 240–252. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67832-6_20

    Chapter  Google Scholar 

  10. Constantin, M.G., Ştefan, L.D., Ionescu, B., Duong, N.Q., Demarty, C.H., Sjöberg, M.: Visual interestingness prediction: a benchmark framework and literature review. Int. J. Comput. Vis. 129(5), 1526–1550 (2021)

    Article  Google Scholar 

  11. Ştefan, L.D., Constantin, M.G., Dogariu, M., Ionescu, B.: Overview of ImageCLEFfusion 2022 task - ensembling methods for media interestingness prediction and result diversification. In: CLEF 2022 Working Notes. CEUR Workshop Proceedings, Bologna, Italy, 5–8 September 2022. CEUR-WS.org (2022)

    Google Scholar 

  12. Demarty, C.H., Sjöberg, M., Ionescu, B., Do, T.T., Gygli, M., Duong, N.: Mediaeval 2017 predicting media interestingness task. In: MediaEval Workshop (2017)

    Google Scholar 

  13. Dicente Cid, Y., Jimenez-del-Toro, O., Depeursinge, A., Müller, H.: Efficient and fully automatic segmentation of the lungs in CT volumes. In: Goksel, O., Jimenez-del-Toro, O., Foncubierta-Rodriguez, A., Müller, H. (eds.) Proceedings of the VISCERAL Challenge at ISBI, vol. 1390, pp. 31–35. CEUR Workshop Proceedings, April 2015

    Google Scholar 

  14. Dicente Cid, Y., Kalinovsky, A., Liauchuk, V., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2017 - predicting tuberculosis type and drug resistances. In: CLEF 2017 Working Notes. CEUR Workshop Proceedings, Dublin, Ireland, 11–14 September 2017. CEUR-WS.org (2017). http://ceur-ws.org

  15. Dicente Cid, Y., Liauchuk, V., Klimuk, D., Tarasau, A., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2019 - automatic CT-based report generation and tuberculosis severity assessment. In: CLEF 2019 Working Notes. CEUR Workshop Proceedings, Lugano, Switzerland, 9–12 September 2019. CEUR-WS.org (2019). http://ceur-ws.org

  16. Dicente Cid, Y., Liauchuk, V., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2018 - detecting multi-drug resistance, classifying tuberculosis type, and assessing severity score. In: CLEF 2018 Working Notes. CEUR Workshop Proceedings, Avignon, France, 10–14 September 2018. CEUR-WS.org (2018). http://ceur-ws.org

  17. García Seco de Herrera, A., Eickhoff, C., Andrearczyk, V., Müller, H.: Overview of the ImageCLEF 2018 caption prediction tasks. In: CLEF 2018 Working Notes. CEUR Workshop Proceedings, Avignon, France, 10–14 September 2018. CEUR-WS.org (2018). http://ceur-ws.org

  18. García Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: Working Notes of CLEF 2016 (Cross Language Evaluation Forum), September 2016

    Google Scholar 

  19. Ionescu, B., Gînscă, A.L., Boteanu, B., Lupu, M., Popescu, A., Müller, H.: Div150multi: a social image retrieval result diversification dataset with multi-topic queries. In: Proceedings of the 7th International Conference on Multimedia Systems, pp. 1–6 (2016)

    Google Scholar 

  20. Ionescu, B., et al.: ImageCLEF 2019: multimedia retrieval in medicine, lifelogging, security and nature. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 358–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_28

    Chapter  Google Scholar 

  21. Ionescu, B., Rohm, M., Boteanu, B., Gînscă, A.L., Lupu, M., Müller, H.: Benchmarking image retrieval diversification techniques for social media. IEEE Trans. Multimed. 23, 677–691 (2020)

    Article  Google Scholar 

  22. Kalpathy-Cramer, J., García Seco de Herrera, A., Demner-Fushman, D., Antani, S., Bedrick, S., Müller, H.: Evaluating performance of biomedical image retrieval systems: overview of the medical image retrieval task at ImageCLEF 2004–2014. Comput. Med. Imaging Graph. 39, 55–61 (2015)

    Google Scholar 

  23. Kozlovski, S., Dicente Cid, Y., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2022 - CT-based caverns detection and report. In: CLEF 2022 Working Notes. CEUR Workshop Proceedings, Bologna, Italy, 5–8 September 2022. CEUR-WS.org (2022). http://ceur-ws.org

  24. Kozlovski, S., Liauchuk, V., Dicente Cid, Y., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2021 - CT-based tuberculosis type classification. In: CLEF 2021 Working Notes. CEUR Workshop Proceedings, Bucharest, Romania, 21–24 September 2021. CEUR-WS.org (2021). http://ceur-ws.org

  25. Kozlovski, S., Liauchuk, V., Dicente Cid, Y., Tarasau, A., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2020 - automatic CT-based report generation. In: CLEF 2020 Working Notes. CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020. CEUR-WS.org (2020). http://ceur-ws.org

  26. Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. CoRR abs/1811.00982 (2018). http://arxiv.org/abs/1811.00982

  27. Liauchuk, V., Kovalev, V.: ImageCLEF 2017: supervoxels and co-occurrence for tuberculosis CT image classification. In: CLEF 2017 Working Notes. CEUR Workshop Proceedings, Dublin, Ireland, 11–14 September 2017. CEUR-WS.org (2017). http://ceur-ws.org

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF - Experimental Evaluation in Visual Information Retrieval. The Springer International Series On Information Retrieval, vol. 32. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15181-1

    Book  MATH  Google Scholar 

  30. Pelka, O., Ben Abacha, A., García Seco de Herrera, A., Jacutprakart, J., Friedrich, C.M., Müller, H.: Overview of the ImageCLEFmed 2021 concept & caption prediction task. In: CLEF 2021 Working Notes. CEUR Workshop Proceedings, Bucharest, Romania, 21–24 September 2021, pp. 1101–1112. CEUR-WS.org (2021)

    Google Scholar 

  31. Pelka, O., Friedrich, C.M., García Seco de Herrera, A., Müller, H.: Overview of the ImageCLEFmed 2019 concept prediction task. In: CLEF 2019 Working Notes. CEUR Workshop Proceedings, Lugano, Switzerland, 09–12 September 2019. CEUR-WS.org (2019). http://ceur-ws.org

  32. Pelka, O., Friedrich, C.M., García Seco de Herrera, A., Müller, H.: Overview of the ImageCLEFmed 2020 concept prediction task: medical image understanding. In: CLEF 2020 Working Notes. CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020. CEUR-WS.org (2020)

    Google Scholar 

  33. Pelka, O., Koitka, S., Rückert, J., Nensa, F., Friedrich, C.M.: Radiology Objects in COntext (ROCO): a multimodal image dataset. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 180–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_20

    Chapter  Google Scholar 

  34. Popescu, A., Deshayes-Chossart, J., Schindler, H., Ionescu, B.: Overview of the ImageCLEF 2022 aware task. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the 13th International Conference of the CLEF Association (CLEF 2022). LNCS. Springer, Cham (2022)

    Google Scholar 

  35. Roberts, R.J.: PubMed central: the GenBank of the published literature. Proc. Natl. Acad. Sci. U.S.A. 98(2), 381–382 (2001). https://doi.org/10.1073/pnas.98.2.381

    Article  Google Scholar 

  36. Rückert, J., et al.: Overview of ImageCLEFmedical 2022 - caption prediction and concept detection. In: CLEF 2022 Working Notes. CEUR Workshop Proceedings, Bologna, Italy, 5–8 September 2022. CEUR-WS.org (2022)

    Google Scholar 

  37. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  38. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

  39. Tsikrika, T., de Herrera, A.G.S., Müller, H.: Assessing the scholarly impact of ImageCLEF. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23708-9_12

    Chapter  Google Scholar 

  40. Tsikrika, T., Larsen, B., Müller, H., Endrullis, S., Rahm, E.: The scholarly impact of CLEF (2000–2009). In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_1

    Chapter  Google Scholar 

  41. World Health Organization, et al.: Global tuberculosis report 2019 (2019)

    Google Scholar 

  42. Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. arXiv preprint arXiv:2201.02605 (2022)

Download references

Acknowledgements

The ImageCLEFaware and ImageCLEFfusion tasks were supported under the H2020 AI4Media “A European Excellence Centre for Media, Society and Democracy” project, contract \(\#951911\). The work of Louise Bloch and Raphael Brüngel was partially funded by a PhD grant from the University of Applied Sciences and Arts Dortmund (FH Dortmund), Germany. The work of Ahmad Idrissi-Yaghir and Henning Schäfer was funded by a PhD grant from the DFG Research Training Group 2535 Knowledge- and data-based personalisation of medicine at the point of care (WisPerMed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Ionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ionescu, B. et al. (2022). Overview of the ImageCLEF 2022: Multimedia Retrieval in Medical, Social Media and Nature Applications. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13643-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13642-9

  • Online ISBN: 978-3-031-13643-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics