Abstract
Multiple Sclerosis (MS) is considered a neurodegenerative disease that can cause multiple injuries within the Central Nervous System (CNS). MS can be diagnosed and qualitatively investigated with nuclear Magnetic Resonance (MR). In this study, a radiomics analysis is carried out considering 30 patients who underwent through MR studies consisting of T1-weighted (T1W), T2-weighted (T2W), Fluid Attenuated Inversion Recovery (FLAIR), and post-contrast administration T1W (T1WKS) images. Since radiomics features can vary greatly in relation to experimental extraction conditions, a first analysis is conducted by calculating the average percentage variations among features as the intensity bin size varies. A second analysis relates to the implementation of the predictive model based on the clinical outcome, namely the Expanded Disability Status Scale (EDSS) of MS. To this aim, the extracted features are reduced, selected, and then used to build the predictive model based on a machine learning algorithm, namely the Linear Discriminant Analysis (LDA). The k-fold strategy is used to split data into training and validation sets. Performance metrics of each model associated with the four MR images (T1W, T2W, FLAIR, and T1WKS) as the bin size varies resulted in optimal predictive values close to 80%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grossman, R.I., McGowan, J.C.: Perspectives on multiple sclerosis. Am. J. Neuroradiol. 19, 1251–1265 (1998)
Kurtzke, J.F.: Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 33, 1444–1452 (1983). https://doi.org/10.1212/wnl.33.11.1444
Mayerhoefer, M.E., et al.: Introduction to radiomics. J. Nucl. Med. 61, 488–495 (2020). https://doi.org/10.2967/JNUMED.118.222893
Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomics and artificial intelligence: New frontiers in medicine. Recenti Prog. Med. 111, 130–135 (2020). https://doi.org/10.1701/3315.32853
Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8
Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics. 10, 306 (2020). https://doi.org/10.3390/diagnostics10050306
Lambin, P., et al.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 48, 441–446 (2012). https://doi.org/10.1016/j.ejca.2011.11.036
Comelli, A., et al.: Radiomics: A new biomedical workflow to create a predictive model. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 280–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_22
van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H., Baessler, B.: Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11(1), 1–16 (2020). https://doi.org/10.1186/s13244-020-00887-2
Stefano, A., et al.: A graph-based method for pet image segmentation in radiotherapy planning: A pilot study. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8157, pp. 711–720. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41184-7_72
Comelli, A., et al.: Tissue classification to support local active delineation of brain tumors. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 3–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_1
Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136–150 (2016). https://doi.org/10.1002/ima.22168
Fedorov, A., et al.: 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging. 30, 1323–1341 (2012). https://doi.org/10.1016/j.mri.2012.05.001
Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339
Zwanenburg, A., et al.: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338 (2020). https://doi.org/10.1148/radiol.2020191145
Lesjak, Ž, et al.: A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1), 51–63 (2017). https://doi.org/10.1007/s12021-017-9348-7
Quantim knowledge-base: https://www.quantim.eu/. Accessed 11 Apr 2022
Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging. 29, 196–205 (2010). https://doi.org/10.1109/TMI.2009.2035616
Tustison, N.J., et al.: N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging. 29, 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908
NIfTI background: https://nifti.nimh.nih.gov/. Accessed 11 Apr 2022
Kim, W., Kim, H.J.: Multiple sclerosis. J. Korean Med. Assoc. 52, 665–676 (2009). https://doi.org/10.5124/jkma.2009.52.7.665
Bretzner, M., et al.: MRI radiomic signature of white matter hyperintensities is associated with clinical phenotypes. Front. Neurosci. 15, 850 (2021). https://doi.org/10.3389/fnins.2021.691244
Carré, A., et al.: Standardization of brain MR images across machines and protocols: Bridging the gap for MRI-based radiomics. Sci. Rep. 10, 1–15 (2020). https://doi.org/10.1038/s41598-020-69298-z
Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961–972 (2021). https://doi.org/10.1002/asmb.2642
Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E.: Linear discriminant analysis: A detailed tutorial. AI Commun. 30, 169–190 (2017). https://doi.org/10.3233/AIC-170729
Lavrova, E., et al.: Exploratory radiomic analysis of conventional vs. quantitative brain MRI: Toward automatic diagnosis of early multiple sclerosis. Front. Neurosci. 15, 1–14 (2021). https://doi.org/10.3389/fnins.2021.679941
Stefano, A., et al.: Robustness of pet radiomics features: Impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170
Stefano, A., Comelli, A.: Customized efficient neural network for Covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131
Salvaggio, G., et al.: Deep learning network for segmentation of the prostate gland with median lobe enlargement in T2-weighted MR images: Comparison with manual segmentation method. Curr. Probl. Diagn. Radiol.2021https://doi.org/10.1067/j.cpradiol.2021.06.006
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nepi, V., Pasini, G., Bini, F., Marinozzi, F., Russo, G., Stefano, A. (2022). MRI-Based Radiomics Analysis for Identification of Features Correlated with the Expanded Disability Status Scale of Multiple Sclerosis Patients. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-13321-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13320-6
Online ISBN: 978-3-031-13321-3
eBook Packages: Computer ScienceComputer Science (R0)