Abstract
A mechanism to support the prioritisation of multi-variate pathology data, in the absence of a ground truth prioritisation, is presented. The motivation is the ever increasing quantity of pathology data that clinicians are expected to consider. The fundamental idea, given a previously unseen pathology result and the associated pathology history, is to use a deep learning model to predict future pathology results and then use the prediction to classify the new pathology result according to a pre-defined set of prioritisation levels. A further challenge is that patient pathology history, expressed as a multi-variate time series, tends to be irregularly time stamped and of variable length. The proposed approach used a Recurrent Neural Network to make predictions and a bounding box technique for the classification. The approach was evaluated using Urea and Electrolytes pathology data. The operation of the proposed approach was also compared with previously reported approaches, and was found to outperform these previous approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, R., Nasiri, F., Zayed, T.: A novel neutrosophic-based machine learning approach for maintenance prioritization in healthcare facilities. J. Build. Eng. 42, 102480 (2021)
Chandralekha, M., Shenbagavadivu, N.: Data analytics for risk of hospitalization of cardiac patients. IETE J. Res. 1–10 (2021)
Doyle, R., et al.: Machine learning-based prediction of COVID-19 mortality with limited attributes to expedite patient prognosis and triage: retrospective observational study. JMIRx Med 2(4), e29392 (2021)
Jiang, H., et al.: Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Int. J. Med. Informat. 145, 104326 (2021)
Klang, E., et al.: Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach. Sci. Rep. 11(1), 1–9 (2021)
Ochella, S., Shafiee, M., Sansom, C.: Adopting machine learning and condition monitoring P-F curves in determining and prioritizing high-value assets for life extension. Expert Syst. Appl. 176, 114897 (2021)
Qi, J., Burnside, G., Charnley, P., Coenen, F.: Event-based pathology data prioritisation: a study using multi-variate time series classification. In: Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR, pp. 121–128. INSTICC, SciTePress (2021)
Qi, J., Burnside, G., Coenen, F.: Ranking pathology data in the absence of a ground truth. In: Bramer, M., Ellis, R. (eds.) SGAI-AI 2021. LNCS (LNAI), vol. 13101, pp. 209–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91100-3_18
Sak, H., Senior, A., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition (2014). arXiv preprint arXiv:1402.1128
Sobrinho, Á., Dias, L., da Silva, E., Candeia, A.P., et al.: Machine learning classification models for COVID-19 test prioritization in Brazil. J. Med. Internet Res. 23(4), e27293 (2021)
Weerakody, P.B., Wong, K.W., Wang, G., Ela, W.: A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing 441, 161–178 (2021)
Wilkin, C., Ferreira, A., Rotaru, K., Gaerlan, L.R.: Big data prioritization in SCM decision-making: its role and performance implications. Int. J. Account. Inf. Syst. 38, 100470 (2020)
Wu, J., Li, N., Zhao, Y.: Missing data filling based on the spectral analysis and the long short-term memory network. In: 2021 International Symposium on Computer Technology and Information Science (ISCTIS), pp. 198–202. IEEE (2021)
Xie, F., et al.: Score for emergency risk prediction (SERP): an interpretable machine learning autoscore-derived triage tool for predicting mortality after emergency admissions. medRxiv (2021)
Zaman, M.A.U., Dongping, D.: A stochastic multivariate irregularly sampled time series imputation method for electronic health records. BioMedInformatics 1(3), 166–181 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qi, J., Burnside, G., Coenen, F. (2022). Pathology Data Prioritisation: A Study Using Multi-variate Time Series. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2022. Lecture Notes in Computer Science, vol 13428. Springer, Cham. https://doi.org/10.1007/978-3-031-12670-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-12670-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12669-7
Online ISBN: 978-3-031-12670-3
eBook Packages: Computer ScienceComputer Science (R0)