Modeling Student Discourse in Online Discussion Forums Using Semantic Similarity Based Topic Chains | SpringerLink
Skip to main content

Abstract

Students’ conversations in academic settings evolve over time and can be affected by events such as the COVID-19 pandemic. In this paper, we employ a Contextualized Topic Modeling technique to detect coherent topics from students’ posts in online discussion forums. We construct topic chains by connecting semantically similar topics across months using Word Mover’s Distance. Consistent academic discourse and contemporary events such as the COVID-19 outbreak and the Black Lives Matter movement were found among prominent topics. In later months, new themes around students’ lived experiences emerged and evolved into discussions reflecting the shift in educational experiences. Results revealed a significant increase in more general topics after the onset of pandemic. Our proposed framework can also be applied to other contexts investigating temporal topic trends in large-scale text data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    github.com/The-Language-and-Learning-Analytics-Lab/topic_trends.

References

  1. Bianchi, F., Terragni, S., Hovy, D.: Pre-training is a hot topic: contextualized document embeddings improve topic coherence. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, vol. 2 (2021)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Kim, D., Oh, A.H.: Topic chains for understanding a news corpus. In: Proceedings of the 12th International Conference on Computational Linguistics and Intelligent Text Processing - Volume Part II (2011)

    Google Scholar 

  4. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML 2015 (2015)

    Google Scholar 

  5. Means, B., Neisler, J., et al.: Suddenly online: a national survey of undergraduates during the Covid-19 pandemic. Technical report, Digital Promise (2020)

    Google Scholar 

  6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (2013)

    Google Scholar 

  7. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019)

    Google Scholar 

  8. Vijayan, R.: Teaching and learning during the COVID-19 pandemic: a topic modeling study. Educ. Sci. 11(7), 347 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshita Chopra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chopra, H. et al. (2022). Modeling Student Discourse in Online Discussion Forums Using Semantic Similarity Based Topic Chains. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds) Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium. AIED 2022. Lecture Notes in Computer Science, vol 13356. Springer, Cham. https://doi.org/10.1007/978-3-031-11647-6_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11647-6_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11646-9

  • Online ISBN: 978-3-031-11647-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics