Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kagermann, H.: Change through digitization—value creation in the age of Industry 4.0. In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent Change, pp. 23–45. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05014-6_2
ITU, Recommendation ITU - T Y.2060: overview of the internet of things, Technical report, International Telecommunication Union
Chand, S., Davis, J.: What is smart manufacturing. Time Mag. Wrapper 7, 28–33 (2010)
Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016)
Zhou, B., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manuf. 33(4), 1139–1163 (2022)
Kharlamov, E., et al.: Ontology based data access in Statoil. J. Web Semant. 44, 3–36 (2017)
Zhou, B.: Machine learning methods for product quality monitoring in electric resistance welding, Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2021)
Zou, X.: A survey on application of knowledge graph. In: Journal of Physics: Conference Series, vol. 1487, p. 012016. IOP Publishing (2020)
Zhou, B., Svetashova, Y., Pychynski, T., Baimuratov, I., Soylu, A., Kharlamov, E.: SemFE: facilitating ML pipeline development with semantics. In: CIKM, pp. 3489–3492. ACM (2020)
Zhou, B., Pychynski, T., Reischl, M., Mikut, R.: Comparison of machine learning approaches for time-series-based quality monitoring of resistance spot welding (RSW). Arch. Data Sci. Ser. A (Online First) 5(1), 13 (2018)
Soylu, A., et al.: TheyBuyForYou platform and knowledge graph: expanding horizons in public procurement with open linked data. Semant. Web 13(2), 265–291 (2022)
Zhou, B., Chioua, M., Schlake, J.-C.: Practical methods for detecting and removing transient changes in univariate oscillatory time series. IFAC-PapersOnLine 50(1), 7987–7992 (2017)
Zhou, B., Chioua, M., Bauer, M., Schlake, J.-C., Thornhill, N.F.: Improving root cause analysis by detecting and removing transient changes in oscillatory time series with application to a 1,3-butadiene process. Ind. Eng. Chem. Res. 58, 11234–11250 (2019)
Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)
Zhou, B., Svetashova, Y., Byeon, S., Pychynski, T., Mikut, R., Kharlamov, E.: Predicting quality of automated welding with machine learning and semantics: a Bosch case study. In: CIKM (2020)
Zhou, B., et al.: Method for resistance welding, US Patent App. 17/199,904 (2021)
Kalaycı, E.G., et al.: Semantic integration of Bosch manufacturing data using virtual knowledge graphs. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 464–481. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_29
Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens. J. Web Semant. 44, 54–74 (2017)
Hubauer, T., Lamparter, S., Haase, P., Herzig, D.M.: Use cases of the industrial knowledge graph at siemens. In: ISWC (P &D/Industry/BlueSky) (2018)
Zhou, B., et al.: SemML: facilitating development of ML models for condition monitoring with semantics. J. Web Semant. 71, 100664 (2021)
Svetashova, Y., et al.: Ontology-enhanced machine learning: a Bosch use case of welding quality monitoring. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 531–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_33
Svetashova, Y., Zhou, B., Schmid, S., Pychynski, T., Kharlamov, E.: SemML: reusable ML for condition monitoring in discrete manufacturing. In: ISWC (Demos/Industry), vol. 2721, pp. 213–218 (2020)
Zhou, B., Svetashova, Y., Pychynski, T., Kharlamov, E.: Semantic ML for manufacturing monitoring at Bosch. In: ISWC (Demos/Ind), vol. 2721, p. 398 (2020)
Smith, B.: Ontology. In: The Furniture of the World, pp. 47–68. Brill (2012)
Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0
Zhou, B., Zhou, D., Chen, J., Svetashova, Y., Cheng, G., Kharlamov, E.: Scaling usability of ML analytics with knowledge graphs: exemplified with a Bosch welding case. In: IJCKG (2021)
Zhou, D., Zhou, B., Chen, J., Cheng, G., Kostylev, E.V., Kharlamov, E.: Towards ontology reshaping for KG generation with user-in-the-loop: applied to Bosch welding. In: IJCKG (2021)
Zheng, Z., et al.: Query-based industrial analytics over knowledge graphs with ontology reshaping. In: ESWC (Posters & Demos) (2022)
Zhou, B., et al.: The data value quest: a holistic semantic approach at Bosch. In: ESWC (Demos/Industry) (2022)
Yahya, M., et al.: Towards generalized welding ontology in line with ISO and knowledge graph construction. In: ESWC (Posters & Demos) (2022)
Acknowledgements
The work was partially supported by the H2020 projects Dome 4.0 (Grant Agreement No. 953163), OntoCommons (Grant Agreement No. 958371), and DataCloud (Grant Agreement No. 101016835) and the SIRIUS Centre, Norwegian Research Council project number 237898.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, D. et al. (2022). Enhancing Knowledge Graph Generation with Ontology Reshaping – Bosch Case. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_45
Download citation
DOI: https://doi.org/10.1007/978-3-031-11609-4_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11608-7
Online ISBN: 978-3-031-11609-4
eBook Packages: Computer ScienceComputer Science (R0)