Query-Based Industrial Analytics over Knowledge Graphs with Ontology Reshaping | SpringerLink
Skip to main content

Query-Based Industrial Analytics over Knowledge Graphs with Ontology Reshaping

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2022 Satellite Events (ESWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13384))

Included in the following conference series:

Abstract

Industrial analytics that includes among others equipment diagnosis and anomaly detection heavily relies on integration of heterogeneous production data. Knowledge Graphs (KGs) as the data format and ontologies as the unified data schemata are a prominent solution that offers high quality data integration and a convenient and standardised way to exchange data and to layer analytical applications over it. However, poor design of ontologies of high degree of mismatch between them and industrial data naturally lead to KGs of low quality that impede the adoption and scalability of industrial analytics. Indeed, such KGs substantially increase the training time of writing queries for users, consume high volume of storage for redundant information, and are hard to maintain and update. To address this problem we propose an ontology reshaping approach to transform ontologies into KG schemata that better reflect the underlying data and thus help to construct better KGs. In this poster we present a preliminary discussion of our on-going research, evaluate our approach with a rich set of SPARQL queries on real-world industry data at Bosch and discuss our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ur Rehman, M.H., et al.: The role of big data analytics in industrial internet of things. Future Gener. Comput. Syst. 99, 247–259 (2019)

    Google Scholar 

  2. Kagermann, H.: Change through digitization—value creation in the age of industry 4.0. In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent Change, pp. 23–45. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05014-6_2

    Chapter  Google Scholar 

  3. Zhou, B., Pychynski, T., Reischl, M., Mikut, R.: Comparison of machine learning approaches for time-series-based quality monitoring of resistance spot welding (RSW). Arch. Data Sci. Ser. A (First) 5(1), 13 (2018)

    Google Scholar 

  4. Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)

    Article  Google Scholar 

  5. Zhou, D., et al.: Enhancing knowledge graph generation with ontology reshaping - Bosch case. In: Groth, P., et al. (eds.) ESWC (Demos/Industry) 2022. LNCS, vol. 13384, pp. 299–302. Springer, Cham (2022)

    Google Scholar 

  6. Zou, X., A survey on application of knowledge graph. In: Journal of Physics: Conference Series, vol. 1487, p. 012016. IOP Publishing (2020)

    Google Scholar 

  7. Yahya, M., Towards generalized welding ontology in line with ISO and knowledge graph construction. In: Groth, P., et al. (eds.) ESWC (Posters & Demos) 2022. LNCS, vol. 13384, pp. 83–88. Springer, Cham (2022)

    Google Scholar 

  8. Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry. Seman. Web 9(5), 627–660 (2018)

    Article  Google Scholar 

  9. Zhou, B., et al.: SemML: facilitating development of ML models for condition monitoring with semantics. J. Web Seman. 71, 100664 (2021)

    Article  Google Scholar 

  10. Svetashova, Y., et al.: Ontology-enhanced machine learning: a BOSCH use case of welding quality monitoring. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 531–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_33

    Chapter  Google Scholar 

  11. Zhou, D., Zhou, B., Chen, J., Cheng, G., Kostylev, E.V., Kharlamov, E.: Towards ontology reshaping for KG generation with user-in-the-loop: applied to BOSCH welding. In: IJCKG (2021)

    Google Scholar 

  12. Svetashova, Y., Zhou, B., Schmid, S., Pychynski, T., Kharlamov, E.: SemML: reusable ML for condition monitoring in discrete manufacturing. In: ISWC (Demos/Industry), vol. 2721, pp. 213–218 (2020)

    Google Scholar 

  13. Doran, P., Ontology reuse via ontology modularisation. In: KnowledgeWeb PhD Symposium, vol. 2006. Citeseer (2006)

    Google Scholar 

  14. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: WWW 2007, pp. 707–716 (2007)

    Google Scholar 

  15. Pouriyeh, S., et al.: Ontology summarization: graph-based methods and beyond. Int. J. Semant. Comput. 13(2), 259–283 (2019)

    Article  Google Scholar 

  16. Zhou, B., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manuf. 33(4), 1139–1163 (2022). https://doi.org/10.1007/s10845-021-01892-y

    Article  Google Scholar 

  17. Zhou, B., Zhou, D., Chen, J., Svetashova, Y., Cheng, G., Kharlamov, E.: Scaling usability of ML analytics with knowledge graphs: exemplified with a Bosch welding case. In: IJCKG, pp. 54–63. ACM (2021)

    Google Scholar 

  18. Zhou, B., et al.: The data value quest: a holistic semantic approach at Bosch. In: Groth, P., et al. (eds.) ESWC (Demos/Industry) 2022. LNCS, vol. 13384, pp. 287–290. Springer, Cham (2022)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the H2020 projects Dome 4.0 (Grant Agreement No. 953163), OntoCommons (Grant Agreement No. 958371), and DataCloud (Grant Agreement No. 101016835) and the SIRIUS Centre, Norwegian Research Council project number 237898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoxun Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z. et al. (2022). Query-Based Industrial Analytics over Knowledge Graphs with Ontology Reshaping. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11609-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11608-7

  • Online ISBN: 978-3-031-11609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics