Towards Generalized Welding Ontology in Line with ISO and Knowledge Graph Construction | SpringerLink
Skip to main content

Towards Generalized Welding Ontology in Line with ISO and Knowledge Graph Construction

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2022 Satellite Events (ESWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13384))

Included in the following conference series:

  • 1057 Accesses

Abstract

Motivation. Industry 4.0 [1, 2] comes with unprecedented amounts of heterogeneous industrial data [3,4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://industryportal.enit.fr/ontologies/RGOM.

  2. 2.

    http://www.loa.istc.cnr.it/dolce/overview.html.

  3. 3.

    https://www.w3.org/TR/owl-time/.

References

  1. Yahya, M., Breslin, J.G., Ali, M.I.: Semantic web and knowledge graphs for industry 4.0. Appl. Sci. 11(11), 5110 (2021)

    Article  Google Scholar 

  2. Sudharsan, B., et al.: Tinyml benchmark: executing fully connected neural networks on commodity microcontrollers. In: 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), pp. 883–884. IEEE (2021)

    Google Scholar 

  3. Zhou, B., Chioua, M., Bauer, M., Schlake, J.-C., Thornhill, N.F.: Improving root cause analysis by detecting and removing transient changes in oscillatory time series with application to a 1, 3-butadiene process. Ind. Eng. Chem. Res. 58, 11234–11250 (2019)

    Article  Google Scholar 

  4. Zhou, B., Chioua, M., Schlake, J.-C.: Practical methods for detecting and removing transient changes in univariate oscillatory time series. IFAC-PapersOnLine 50(1), 7987–7992 (2017)

    Article  Google Scholar 

  5. Chand, S., Davis, J.: What is smart manufacturing. Time Mag. Wrapper 7, 28–33 (2010)

    Google Scholar 

  6. Mikhaylov, D., Zhou, B., Kiedrowski, T., Mikut, R., Lasagni, A.-F.: High accuracy beam splitting using slm combined with ML algorithms. Opt. Lasers Eng. 121, 227–235 (2019)

    Article  Google Scholar 

  7. Mikhaylov, D., Zhou, B., Kiedrowski, T., Mikut, R., Lasagni, A.F.: Machine learning aided phase retrieval algorithm for beam splitting with an LCoS-SLM. In: Laser Resonators, Microresonators, and Beam Control XXI, vol. 10904, International Society for Optics and Photonics, p. 109041M (2019)

    Google Scholar 

  8. Zhou, B., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manuf. 33, 1–25 (2022). https://doi.org/10.1007/s10845-021-01892-y

    Article  Google Scholar 

  9. Zhou, D., et al.: Enhancing knowledge graph generation with ontology reshaping - Bosch case, in: ESWC (Demos/Industry). Springer (2022)

    Google Scholar 

  10. Mailis, T., Kotidis, Y., Christoforidis, S., Kharlamov, E., Ioannidis, Y.E.: View selection over knowledge graphs in triple stores. Proc. VLDB Endow. 14(13), 3281–3294 (2021)

    Article  Google Scholar 

  11. Zhou, B., Zhou, D., Chen, J., Svetashova, Y., Cheng, G., Kharlamov, E.: Scaling usability of ML analytics with knowledge graphs: exemplified with a bosch welding case. In: IJCKG, pp. 54–63. ACM (2021)

    Google Scholar 

  12. Svetashova, Y., et al.: Ontology-enhanced machine learning: a bosch use case of welding quality monitoring. In: Pan, J.Z. (ed.) ISWC 2020. LNCS, vol. 12507, pp. 531–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_33

    Chapter  Google Scholar 

  13. Zhou, B., Svetashova, Y., Pychynski, T., Kharlamov, E.: Semantic ML For manufacturing monitoring at Bosch. In: ISWC (Demos/Industry), vol. 2721, p. 398 (2020)

    Google Scholar 

  14. Svetashova, Y., Zhou, B., Schmid, S., Pychynski, T., Kharlamov, E.: SemML: Reusable ML for condition monitoring in discrete manufacturing. In: ISWC (Demos/Industry), vol. 2721, pp. 213–218 (2020)

    Google Scholar 

  15. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Learning rules from incomplete KGs using embeddings. In: ISWC Posters & Demos, vol. 2180, CEUR-WS.org (2018)

    Google Scholar 

  16. Zhou, B.: Machine learning methods for product quality monitoring in electric resistance welding, Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2021)

    Google Scholar 

  17. Zhou, B., Pychynski, T., Reischl, M., Mikut, R.: Comparison of machine learning approaches for time-series-based quality monitoring of resistance spot welding (RSW). Arch. Data Sci. Series A (Online First) 5(1), 13 (2018)

    Google Scholar 

  18. Zhou, B., Svetashova, Y., Byeon, S., Pychynski, T., Mikut, R., Kharlamov, E.: Predicting quality of automated welding with machine learning and semantics: a Bosch case study. In: CIKM. ACM, pp. 2933–2940 (2020)

    Google Scholar 

  19. Chang, X., Rai, R., Terpenny, J.: Design for manufacturing (DFM) ontology: implementation of a mechanical assembly through welding process. In: IIE Annual Conference. Proceedings, p. 1690 (2007)

    Google Scholar 

  20. Saha, S., Usman, Z., Li, W., Jones, S., Shah, N.: Core domain ontology for joining processes to consolidate welding standards. Robot. Comput.-Integr. Manuf. 59, 417–430 (2019)

    Article  Google Scholar 

  21. Zhou, B., Svetashova, Y., Pychynski, T., Baimuratov, I., Soylu, A., Kharlamov, E.: SemFE: facilitating ML pipeline development with semantics. In: CIKM. ACM, pp. 3489–3492 (2020)

    Google Scholar 

  22. Zhou, B., et al.: SemML: Facilitating development of ML models for condition monitoring with semantics. J. Web Semant. 71, 100664 (2021)

    Article  Google Scholar 

  23. Zhou, B., et al.: The data value quest: a holistic semantic approach at Bosch. In: ESWC (Demos/Industry). Springer (2022)

    Google Scholar 

  24. Zhou, D., Zhou, B., Chen, J., Cheng, G., Kostylev, E., Kharlamov, E.: Towards ontology reshaping for KG generation with user-in-the-loop: applied to Bosch welding. In: IJCKG. ACM, pp. 145–150 (2021)

    Google Scholar 

  25. Zheng, Z., et al.: Query-based industrial analytics over knowledge graphs with ontology reshaping. In: ESWC (Posters & Demos). Springer (2022)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by SFI (Grant 16/RC/ 3918), and the H2020 projects Dome 4.0 (Grant Agreement No. 953163), OntoCommons (Grant Agreement No. 958371), and DataCloud (Grant Agreement No. 101016835) and the SIRIUS Centre, Norwegian Research Council project number 237898. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yahya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yahya, M. et al. (2022). Towards Generalized Welding Ontology in Line with ISO and Knowledge Graph Construction. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11609-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11608-7

  • Online ISBN: 978-3-031-11609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics