Properties of System W and Its Relationships to Other Inductive Inference Operators | SpringerLink
Skip to main content

Properties of System W and Its Relationships to Other Inductive Inference Operators

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS))

Abstract

System W is a recently introduced inference method for conditional belief bases with some notable properties like capturing system Z and thus rational closure and, in contrast to system Z, fully satisfying syntax splitting. This paper further investigates properties of system W. We show how system W behaves with respect to postulates put forward for nonmonotonic reasoning like rational monotony, weak rational monotony, or semi-monotony. We develop tailored postulates ensuring syntax splitting for any inference operator based on a strict partial order on worlds. By showing that system W satisfies these axioms, we obtain an alternative and more general proof that system W satisfies syntax splitting. We explore how syntax splitting affects the strict partial order underlying system W and exploit this for answering certain queries without having to determine the complete strict partial order. Furthermore, we investigate the relationships among system W and other inference methods, showing that, for instance, lexicographic inference extends both system W and c-inference, and leading to a full map of interrelationships among various inductive inference operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, E.: The logic of conditionals. Inquiry 8(1–4), 166–197 (1965)

    Article  Google Scholar 

  2. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Properties of skeptical c-inference for conditional knowledge bases and its realization as a constraint satisfaction problem. Ann. Math. Artif. Intell. 83(3–4), 247–275 (2018)

    Article  MathSciNet  Google Scholar 

  3. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Properties and interrelationships of skeptical, weakly skeptical, and credulous inference induced by classes of minimal models. Artif. Intell. 297, 103489 (2021)

    Article  MathSciNet  Google Scholar 

  4. Beierle, C., Haldimann, J.: Normal forms of conditional belief bases respecting inductive inference. In: Keshtkar, F., Franklin, M. (eds.) Proceedings of the Thirty-Fifth International Florida Artificial Intelligence Research Society Conference (FLAIRS), Hutchinson Island, Florida, USA, 15–18 May 2022 (2022)

    Google Scholar 

  5. Beierle, C., Haldimann, J.: Normal forms of conditional knowledge bases respecting system p-entailments and signature renamings. Ann. Math. Artif. Intell. 90(2), 149–179 (2022)

    Article  MathSciNet  Google Scholar 

  6. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proceedings of IJCAI 1993, vol. 1, pp. 640–647. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  7. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1–2), 1–29 (1997)

    Article  MathSciNet  Google Scholar 

  8. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst. H. Poincaré 7(1), 1–68 (1937). Engl. transl. Theory of Probability, J. Wiley & Sons, 1974

    Google Scholar 

  9. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif. Intell. 84(1–2), 57–112 (1996)

    Article  MathSciNet  Google Scholar 

  10. Haldimann, J., Beierle, C.: Inference with system W satisfies syntax splitting. In: Principles of Knowledge Representation and Reasoning: Proceedings of the 19th International Conference, KR 2022, Haifa, Israel, 31 July–5 August 2022 (2022, to appear)

    Google Scholar 

  11. Heyninck, J., Kern-Isberner, G., Meyer, T.: Lexicographic entailment, syntax splitting and the drowning problem. In: 31st International Joint Conference on Artificial Intelligence, IJCAI 2022. ijcai.org (2022, to appear)

    Google Scholar 

  12. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS, vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1_3

    Book  MATH  Google Scholar 

  13. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Ann. Math. Artif. Intell. 40(1–2), 127–164 (2004)

    Article  MathSciNet  Google Scholar 

  14. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting = relevance + independence: New postulates for nonmonotonic reasoning from conditional belief bases. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the 17th International Conference, KR 2020, pp. 560–571. IJCAI Organization (2020)

    Google Scholar 

  15. Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision. In: IJCAI-2017, pp. 1131–1137 (2017)

    Google Scholar 

  16. Kern-Isberner, G., Eichhorn, C.: Structural inference from conditional knowledge bases. Stud. Logica. 102(4), 751–769 (2014)

    Article  MathSciNet  Google Scholar 

  17. Komo, C., Beierle, C.: Nonmonotonic inferences with qualitative conditionals based on preferred structures on worlds. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 102–115. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58285-2_8

    Chapter  Google Scholar 

  18. Komo, C., Beierle, C.: Nonmonotonic reasoning from conditional knowledge bases with system W. Ann. Math. Artif. Intell. 90(1), 107–144 (2021). https://doi.org/10.1007/s10472-021-09777-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MathSciNet  Google Scholar 

  20. Kutsch, S., Beierle, C.: InfOCF-Web: an online tool for nonmonotonic reasoning with conditionals and ranking functions. In: Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021, pp. 4996–4999. ijcai.org (2021)

    Google Scholar 

  21. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55, 1–60 (1992)

    Article  MathSciNet  Google Scholar 

  22. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–82 (1995). https://doi.org/10.1007/BF01535841

    Article  MathSciNet  MATH  Google Scholar 

  23. Parikh, R.: Beliefs, belief revision, and splitting languages. Logic Lang. Comput. 2, 266–278 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proceedings of TARK 1990, pp. 121–135. Morgan Kaufmann (1990)

    Google Scholar 

  25. Peppas, P., Williams, M.A., Chopra, S., Foo, N.Y.: Relevance in belief revision. Artif. Intell. 229((1–2)), 126–138 (2015)

    Google Scholar 

  26. Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)

    Article  MathSciNet  Google Scholar 

  27. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, II, pp. 105–134. Kluwer Academic Publishers (1988)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their detailed and helpful comments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant BE 1700/10-1 awarded to Christoph Beierle as part of the priority program “Intentional Forgetting in Organizations” (SPP 1921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beierle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haldimann, J., Beierle, C. (2022). Properties of System W and Its Relationships to Other Inductive Inference Operators. In: Varzinczak, I. (eds) Foundations of Information and Knowledge Systems. FoIKS 2022. Lecture Notes in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-031-11321-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11321-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11320-8

  • Online ISBN: 978-3-031-11321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics