Abstract
Click-through rate (CTR) prediction is widely used in recommendation systems. Accurately modeling user interest is the key to improve the performance of CTR prediction task. Existing methods pay attention to model user interest from a single perspective to reflect user preferences, ignoring user different interests in different aspects, thus limiting the expressive ability of user interest. In this paper, we propose a novel Deep User Multi-Interest Network (DUMIN) which designs Self-Interest Extraction Network (SIEN) and User-User Interest Extraction Network (UIEN) to capture user different interests. First, SIEN uses attention mechanism and sequential network to focus on different parts in self-interest. Meanwhile, an auxiliary loss network is used to bring extra supervision for model training. Next, UIEN adopts multi-headed self-attention mechanism to learn a unified interest representation for each user who interacted with the candidate item. Then, attention mechanism is introduced to adaptively aggregate these interest representations to obtain user-user interest, which reflects the collaborative filtering information among users. Extensive experimental results on public real-world datasets show that proposed DUMIN outperforms various state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellogin, A., Castells, P., Cantador, I.: Neighbor selection and weighting in user-based collaborative filtering: a performance prediction approach. ACM Trans. Web 8(2), 1–30 (2014)
Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)
Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
Covington, P., Adams, J., Sargin, E.: Deep neural networks for Youtube recommendations. In: Proceedings of the 10th Conference on Recommender Systems, pp. 191–198 (2016)
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1725–1731 (2017)
He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International Conference on Research on Development in Information Retrieval, pp. 355–364 (2017)
Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: Proceedings of the 4th International Conference on Learning Representations (2016)
Huang, Z., Tao, M., Zhang, B.: Deep user match network for click-through rate prediction. In: Proceedings of the 44th International Conference on Research and Development in Information Retrieval, pp. 1890–1894 (2021)
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining, pp. 426–434 (2008)
Li, X., Wang, C., Tong, B., Tan, J., Zeng, X., Zhuang, T.: Deep time-aware item evolution network for click-through rate prediction. In: Proceedings of the 29th International Conference on Information and Knowledge Management, pp. 785–794 (2020)
Lyu, Z., Dong, Y., Huo, C., Ren, W.: Deep match to rank model for personalized click-through rate prediction. In: Proceedings of the 34th Conference on Artificial Intelligence, pp. 156–163 (2020)
McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining, pp. 1222–1230 (2013)
Qu, Y., et al.: Product based neural networks for user response prediction. In: Proceedings of the 16th International Conference on Data Mining, pp. 1149–1154 (2016)
Rendle, S.: Factorization machines. In: Proceedings of the 10th International Conference on Data Mining, pp. 995–1000 (2010)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Xiao, Z., Yang, L., Jiang, W., Wei, Y., Hu, Y., Wang, H.: Deep multi-interest network for click-through rate prediction. In: Proceedings of the 29th International Conference on Information and Knowledge Management, pp. 2265–2268 (2020)
Xu, Z., et al.: Agile and accurate CTR prediction model training for massive-scale online advertising systems. In: Proceedings of the 2021 International Conference on Management of Data, pp. 2404–2409 (2021)
Zhou, G., et al.: Deep interest evolution network for click-through rate prediction. In: Proceedings of the 33th Conference on Artificial Intelligence, pp. 5941–5948 (2019)
Zhou, G., et al.: Deep interest network for click-through rate prediction. In: Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining, pp. 1059–1068 (2018)
Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)
Cao, W., Yang, P., Ming, Z., Cai, S., Zhang, J.: An improved fuzziness based random vector functional link network for liver disease detection. In: Proceedings of the 6th International Conference on Big Data Security on Cloud, pp. 42–48 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, M., Xing, J., Chen, S. (2022). Deep User Multi-interest Network for Click-Through Rate Prediction. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-10986-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10985-0
Online ISBN: 978-3-031-10986-7
eBook Packages: Computer ScienceComputer Science (R0)