Abstract
The action recognition backbone has continued to advance. The two-stream method based on Convolutional Neural Networks (CNNs) usually pays more attention to the video’s local features and ignores global information because of the limitation of Convolution kernels. Transformer based on attention mechanism is adopted to capture global information, which is inferior to CNNs in extracting local features. More features can improve video representations. Therefore, a novel two-stream Transformer model is proposed, Sparse Dense Transformer Network(SDTN), which involves (i) a Sparse pathway, operating at low frame rate, to capture spatial semantics and local features; and (ii) a Dense pathway, running at high frame rate, to abstract motion information. A new patch-based cropping approach is presented to make the model focus on the patches in the center of the frame. Furthermore, frame alignment, a method that compares the input frames of the two pathways, reduces the computational cost. Experiments show that SDTN extracts deeper spatiotemporal features through input policy of various temporal resolutions, and reaches 82.4% accuracy on Kinetics-400, outperforming the previous method by more than 1.9% accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. arXiv preprint arXiv:2103.15691 (2021)
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? arXiv preprint arXiv:2102.05095 (2021)
Cao, W.P., et al.: An ensemble fuzziness-based online sequential learning approach and its application. In: International Conference on Knowledge Science, Engineering and Management (KSEM), pp. 255–267 (2021)
Cao, W., Xie, Z., Li, J., Xu, Z., Ming, Z., Wang, X.: Bidirectional stochastic configuration network for regression problems. Neural Netw. 140, 237–246 (2021)
Cao, W., Yang, P., Ming, Z., Cai, S., Zhang, J.: An improved fuzziness based random vector functional link network for liver disease detection. In: 2020 IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), pp. 42–48 (2020)
Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6299–6308 (2017)
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fan, H., et al.: Multiscale vision transformers. arXiv preprint arXiv:2104.11227 (2021)
Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 203–213 (2020)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6202–6211 (2019)
Gao, R., Oh, T.H., Grauman, K., Torresani, L.: Listen to look: action recognition by previewing audio. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10457–10467 (2020)
Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 244–253 (2019)
Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. arXiv preprint arXiv:2103.00112 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Hu, F., Lakdawala, S., Hao, Q., Qiu, M.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf Technol. Biomed. 13(4), 656–663 (2009)
Kahatapitiya, K., Ryoo, M.S.: Coarse-fine networks for temporal activity detection in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8385–8394 (2021)
Kalfaoglu, M.E., Kalkan, S., Alatan, A.A.: Late temporal modeling in 3D CNN architectures with BERT for action recognition. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 731–747. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_48
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Li, J., Liu, X., Zhang, W., Zhang, M., Song, J., Sebe, N.: Spatio-temporal attention networks for action recognition and detection. IEEE Trans. Multimedia 22(11), 2990–3001 (2020)
Li, Y., Song, Y., Jia, L., Gao, S., Li, Q., Qiu, M.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans. Industr. Inf. 17(4), 2833–2841 (2020)
Liu, Z., et al.: Video Swin transformer. arXiv preprint arXiv:2106.13230 (2021)
Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. arXiv preprint arXiv:2102.00719 (2021)
Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5533–5541 (2017)
Sharir, G., Noy, A., Zelnik-Manor, L.: An image is worth 16 \(\times \) 16 words, what is a video worth? arXiv preprint arXiv:2103.13915 (2021)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497 (2015)
Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5552–5561 (2019)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6450–6459 (2018)
Van Essen, D.C., Gallant, J.L.: Neural mechanisms of form and motion processing in the primate visual system. Neuron 13(1), 1–10 (1994)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NIPS), pp. 5998–6008 (2017)
Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2
Zhang, S., Guo, S., Huang, W., Scott, M.R., Wang, L.: V4D: 4d convolutional neural networks for video-level representation learning. arXiv preprint arXiv:2002.07442 (2020)
Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qu, X., Zhang, Z., Xiao, W., Ran, J., Wang, G., Zhang, Z. (2022). Sparse Dense Transformer Network for Video Action Recognition. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-10986-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10985-0
Online ISBN: 978-3-031-10986-7
eBook Packages: Computer ScienceComputer Science (R0)