Sparse Dense Transformer Network for Video Action Recognition | SpringerLink
Skip to main content

Sparse Dense Transformer Network for Video Action Recognition

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13369))

  • 2077 Accesses

Abstract

The action recognition backbone has continued to advance. The two-stream method based on Convolutional Neural Networks (CNNs) usually pays more attention to the video’s local features and ignores global information because of the limitation of Convolution kernels. Transformer based on attention mechanism is adopted to capture global information, which is inferior to CNNs in extracting local features. More features can improve video representations. Therefore, a novel two-stream Transformer model is proposed, Sparse Dense Transformer Network(SDTN), which involves (i) a Sparse pathway, operating at low frame rate, to capture spatial semantics and local features; and (ii) a Dense pathway, running at high frame rate, to abstract motion information. A new patch-based cropping approach is presented to make the model focus on the patches in the center of the frame. Furthermore, frame alignment, a method that compares the input frames of the two pathways, reduces the computational cost. Experiments show that SDTN extracts deeper spatiotemporal features through input policy of various temporal resolutions, and reaches 82.4% accuracy on Kinetics-400, outperforming the previous method by more than 1.9% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. arXiv preprint arXiv:2103.15691 (2021)

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? arXiv preprint arXiv:2102.05095 (2021)

  4. Cao, W.P., et al.: An ensemble fuzziness-based online sequential learning approach and its application. In: International Conference on Knowledge Science, Engineering and Management (KSEM), pp. 255–267 (2021)

    Google Scholar 

  5. Cao, W., Xie, Z., Li, J., Xu, Z., Ming, Z., Wang, X.: Bidirectional stochastic configuration network for regression problems. Neural Netw. 140, 237–246 (2021)

    Article  Google Scholar 

  6. Cao, W., Yang, P., Ming, Z., Cai, S., Zhang, J.: An improved fuzziness based random vector functional link network for liver disease detection. In: 2020 IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), pp. 42–48 (2020)

    Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6299–6308 (2017)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Fan, H., et al.: Multiscale vision transformers. arXiv preprint arXiv:2104.11227 (2021)

  10. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 203–213 (2020)

    Google Scholar 

  11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6202–6211 (2019)

    Google Scholar 

  12. Gao, R., Oh, T.H., Grauman, K., Torresani, L.: Listen to look: action recognition by previewing audio. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10457–10467 (2020)

    Google Scholar 

  13. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 244–253 (2019)

    Google Scholar 

  14. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. arXiv preprint arXiv:2103.00112 (2021)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Hu, F., Lakdawala, S., Hao, Q., Qiu, M.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf Technol. Biomed. 13(4), 656–663 (2009)

    Article  Google Scholar 

  17. Kahatapitiya, K., Ryoo, M.S.: Coarse-fine networks for temporal activity detection in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8385–8394 (2021)

    Google Scholar 

  18. Kalfaoglu, M.E., Kalkan, S., Alatan, A.A.: Late temporal modeling in 3D CNN architectures with BERT for action recognition. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 731–747. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_48

    Chapter  Google Scholar 

  19. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  20. Li, J., Liu, X., Zhang, W., Zhang, M., Song, J., Sebe, N.: Spatio-temporal attention networks for action recognition and detection. IEEE Trans. Multimedia 22(11), 2990–3001 (2020)

    Article  Google Scholar 

  21. Li, Y., Song, Y., Jia, L., Gao, S., Li, Q., Qiu, M.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans. Industr. Inf. 17(4), 2833–2841 (2020)

    Article  Google Scholar 

  22. Liu, Z., et al.: Video Swin transformer. arXiv preprint arXiv:2106.13230 (2021)

  23. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. arXiv preprint arXiv:2102.00719 (2021)

  24. Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)

    Article  Google Scholar 

  25. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5533–5541 (2017)

    Google Scholar 

  26. Sharir, G., Noy, A., Zelnik-Manor, L.: An image is worth 16 \(\times \) 16 words, what is a video worth? arXiv preprint arXiv:2103.13915 (2021)

  27. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014)

  28. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497 (2015)

    Google Scholar 

  29. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5552–5561 (2019)

    Google Scholar 

  30. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6450–6459 (2018)

    Google Scholar 

  31. Van Essen, D.C., Gallant, J.L.: Neural mechanisms of form and motion processing in the primate visual system. Neuron 13(1), 1–10 (1994)

    Article  Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NIPS), pp. 5998–6008 (2017)

    Google Scholar 

  33. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  34. Zhang, S., Guo, S., Huang, W., Scott, M.R., Wang, L.: V4D: 4d convolutional neural networks for video-level representation learning. arXiv preprint arXiv:2002.07442 (2020)

  35. Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, X., Zhang, Z., Xiao, W., Ran, J., Wang, G., Zhang, Z. (2022). Sparse Dense Transformer Network for Video Action Recognition. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10986-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10985-0

  • Online ISBN: 978-3-031-10986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics