Abstract
The paper presents the algorithm of a code written for computing the cross section for a charge transfer process involving a neutral molecule and a monatomic ion. The entrance and exit potential energy surfaces, driving the collision dynamics, are computed employing the Improved Lennard-Jones function that accounts for the role of non-electrostatic forces, due to size repulsion plus dispersion and induction attraction. In addition, electrostatic components, affecting the entrance channels, are evaluated as sum of Coulomb contributions, determined by the He\(^+\) ion interacting with the charge distribution on the molecular frame. The cross section is estimated by employing the Landau-Zener-Stückelberg approach. The code implemented has been employed in systems involving helium cation and a small organic molecule, such as methanol, dimethyl ether and methyl formate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McGuire, B.A.: 2021 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 259(2), 30 (2022). https://doi.org/10.3847/1538-4365/ac2a48
Müller, H.S.P., Thorwirth, S., Roth, D.A., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS. A &A 370(3), L49–L52 (2001). https://doi.org/10.1051/0004-6361:20010367. https://cdms.astro.uni-koeln.de/classic/molecules. Accessed 13 Apr 2022
Müller, H.S., Schlöder, F., Stutzki, J., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742(1), 215–227 (2005). https://doi.org/10.1016/j.molstruc.2005.01.027
Endres, C.P., Schlemmer, S., Schilke, P., Stutzki, J., Müller, H.S.: The cologne database for molecular spectroscopy, CDMS, in the virtual atomic and molecular data centre, VAMDC. J. Mol. Spectro. 327, 95–104 (2016). https://doi.org/10.1016/j.jms.2016.03.005. New Visions of Spectroscopic Databases, Volume II
Herbst, E., Van Dishoeck, E.F.: Complex organic interstellar molecules. Ann. Rev. Astron. Astrophys. 47, 427–480 (2009)
Ceccarelli, C., et al.: Seeds of life in space (SOLIS): the organic composition diversity at 300–1000 au scale in solar-type star-forming regions. Astrophys. J. 850(2), 176 (2017)
López-Sepulcre, A., Balucani, N., Ceccarelli, C., Codella, C., Dulieu, F., Theule, P.: Interstellar formamide (NH\(_{2}\)CHO), a key prebiotic precursor. ACS Earth Space Chem. 3(10), 2122–2137 (2019). https://doi.org/10.1021/acsearthspacechem.9b00154
Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20(1), 1–68 (2012). https://doi.org/10.1007/s00159-012-0056-x
Herbst, E.: The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 36(2), 287–331 (2017)
Agúndez, M., Wakelam, V.: Chemistry of dark clouds: databases, networks, and models. Chem. Rev. 113(12), 8710–8737 (2013)
Taquet, V., Ceccarelli, C., Kahane, C.: Multilayer modeling of porous grain surface chemistry-I. The GRAINOBLE model. Astron. Astrophys. 538, A42 (2012)
Garrod, R., Herbst, E.: Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457(3), 927–936 (2006)
Vasyunin, A.I., Caselli, P., Dulieu, F., Jiménez-Serra, I.: Formation of complex molecules in prestellar cores: a multilayer approach. Astrophys. J. 842(1), 33 (2017)
Garrod, R.T., Weaver, S.L.W., Herbst, E.: Complex chemistry in star-forming regions: an expanded gas-grain warm-up chemical model. Astrophys. J. 682(1), 283 (2008)
Balucani, N., Ceccarelli, C., Taquet, V.: Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Monthly Notices R. Astron. Soc. Lett. 449(1), L16–L20 (2015)
Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. Astrophys. J. 854(2), 135 (2018)
Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic Sulphur and S\(_2\). Chem. Phys. Lett. 695, 87–93 (2018). https://doi.org/10.1016/j.cplett.2018.01.053
Wakelam, V., et al.: A kinetic database for astrochemistry (KIDA). ApJS 199(1), 21 (2012). https://doi.org/10.1088/0067-0049/199/1/21
Woodall, J., Agúndez, M., Markwick-Kemper, A.J., Millar, T.J.: The UMIST database for astrochemistry 2006*. A &A 466(3), 1197–1204 (2007). https://doi.org/10.1051/0004-6361:20064981
Mallard, W., Linstrom, P.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD 20899 (2000). https://doi.org/10.18434/T4D303
Lepp, S., Stancil, P., Dalgarno, A.: Atomic and molecular processes in the early Universe. J. Phys. B: At. Mol. Opt. Phys. 35(10), R57 (2002)
De Fazio, D.: The H + HeH\(^+\)\(\rightarrow \) He\(^+\) H\(_2^+\) reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants. Phys. Chem. Chem. Phys. 16(23), 11662–11672 (2014). https://doi.org/10.1039/C4CP00502C
Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10(36), 5489–5503 (2008)
Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004). https://doi.org/10.1016/j.cplett.2004.06.100
Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^+\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008). https://doi.org/10.1039/B808200F
Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: A bond-bond description of the intermolecular interaction energy: the case of weakly bound N\(_{2}\)-H\(_{2}\) and N\(_{2}\)-N\(_{2}\) complexes. Phys. Chem. Chem. Phys. 10, 4281–4293 (2008). https://doi.org/10.1039/B803961E
Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_{2}\) + N\(_{2}\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013). https://doi.org/10.1002/jcc.23415
Candori, R., et al.: Structure and charge transfer dynamics of the (Ar-N\(_2\))\(^+\) molecular cluster. J. Chem. Phys. 115(19), 8888–8898 (2001). https://doi.org/10.1063/1.1413980
Candori, R., Pirani, F., Cappelletti, D., Tosi, P., Bassi, D.: State-to-state cross-sections for N\(_2^+\) (\(X, \nu ^{\prime }\) = 1,2) + Ar and Ar\(^+\)(\(^2\)P\(_{j, mj}\)) + N\(_2\) (\(X, \nu \) = 0) at low energies. Int. J. Mass Spectrom. 223, 499–506 (2003). https://doi.org/10.1016/S1387-3806(02)00873-4
Cernuto, A., Tosi, P., Martini, L.M., Pirani, F., Ascenzi, D.: Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process. Phys. Chem. Chem. Phys. 19(30), 19554–19565 (2017). https://doi.org/10.1039/C7CP00827A
Landau, L.: On the theory of transfer of energy at collisions II. Physikalische Zeitschrift der Sowjetunion 2, 46–51 (1932)
Zener, C.: Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). https://doi.org/10.1098/rspa.1932.0165
Stückelberg, E.C.G.: Theory of inelastic collisions between atoms. Helv. Phys. Acta 5, 369–423 (1932). https://doi.org/10.5169/seals-110177
Nikitin, E.E., Umanskii, S.Y.: Theory of slow atomic collisions (1984). https://doi.org/10.1007/978-3-642-82045-8
Nikitin, E.E.: Nonadiabatic transitions: what we learned from old masters and how much we owe them. Annu. Rev. Phys. Chem. 50(1), 1–21 (1999). https://doi.org/10.1146/annurev.physchem.50.1.1
Cernuto, A., Pirani, F., Martini, L.M., Tosi, P., Ascenzi, D.: The selective role of long-range forces in the stereodynamics of ion-molecule reactions: the He\(^+\) + Methyl Formate case from guided-ion-beam experiments. ChemPhysChem 19(1), 51–59 (2018). https://doi.org/10.1002/cphc.201701096
Acknowledgements
The authors thank Andrea Cernuto who originally developed the code. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). The authors thank the Herla Project (http://www.hpc.unipg.it/hosting/vherla/vherla.html) - Università degli Studi di Perugia for allocated computing time. The authors thank the Dipartimento di Ingegneria Civile ed Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”. N. F.-L thanks MIUR and the University of Perugia for the financial support of the AMIS project through the “Dipartimenti di Eccellenza” programme. N.F.-L. also acknowledges the Fondo Ricerca di Base 2021 (RICBASE2021FAGINAS) del Dipartimento di Chimica, Biologia e Biotecnologie della Università di Perugia for financial support. D.A. and M.R. acknowledge funding from MUR PRIN 2020 project n. 2020AFB3FX.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Aragão, E.V.F. et al. (2022). Coding Cross Sections of an Electron Charge Transfer Process. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-10592-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10591-3
Online ISBN: 978-3-031-10592-0
eBook Packages: Computer ScienceComputer Science (R0)