Abstract
The tracking of objects is a complex mission computer vision and machine learning (ML). There are several types of objects tracking like tracking one object or more than one. The tracking of one object is applied in video frames as the tracking of more than one object is applied to tracking for multiple objects in the video. Single object tracking is usually implemented using the method of correlation filter-based or of Siamese Network-based. Siamese Network, the state of art method, has an active search area, nowadays, due to its good achievements in accordance with localization real-time and accuracy application. Especially within a new surveillance system that is built on UAV to get unbounded tracking. GPU-based embedded systems give superior performance in comparison with CPU-based systems in the implementation of ML in the terms of speed. In this paper low-cost NVIDIA Jetson nano embedded system performance was evaluated for real-time Siamese single object tracking. 14 Siamese single object tracking algorithms were tested using NVIDIA Jetson nano board. The result shows that the bord gives the best performance with the Lighttrack algorithm with 8.3 frames per second speed. Such performance can be used in real-time tracking applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhu, P., et al.: Vision meets drones: past, present and future. IEEE Access 9, 110149–110172 (2020). https://doi.org/10.1109/ACCESS.2021.3101988
Ondrasovic, M., Tarabek, P.: Siamese visual object tracking: a survey. IEEE Access 9, 110149–110172 (2021). https://doi.org/10.1109/ACCESS.2021.3101988
Cao, Z., et al.: SiamAPN++: Siamese Attentional Aggregation Network for Real-Time UAV Tracking (2021)
You, S., Zhu, H., Li, M., Li, Y.: A review of visual trackers and analysis of its application to mobile robot. arXiv preprint arXiv:1910.09761 (2019)
Fu, C., et al.: Correlation filters for unmanned aerial vehicle-based aerial tracking: a review and experimental evaluation. IEEE Geosci. Remote Sens. Mag. 10, 1–28 (2021). https://doi.org/10.1109/MGRS.2021.3072992
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Li, B., et al.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018). https://doi.org/10.1109/CVPR.2018.00935
Zhu, Z., et al.: Distractor-aware Siamese Networks for Visual Object Tracking. arXiv:1808.06048v1 [cs.CV]. ECCV 2018, pp. 1–17 (2018)
Li, B., et al.: SIAMRPN++: evolution of siamese visual tracking with very deep networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, pp. 4277–4286 (2019). https://doi.org/10.1109/CVPR.2019.00441
Fu, C., et al.: Siamese Anchor Proposal Network for High-Speed Aerial Tracking (2020). https://doi.org/10.1109/icra48506.2021.9560756
Yan, B., et al.: LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search (2021). https://doi.org/10.1109/cvpr46437.2021.01493
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Reddi, V.J., et al.: MLPerf inference benchmark. In: Proceedings - International Symposium on Computer Architecture, 2020-May, pp. 446–459 (2020). https://doi.org/10.1109/ISCA45697.2020.00045
Jo, J., Jeong, S., Kang, P.: Benchmarking GPU-accelerated edge devices. In: IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 117–120 (2020). https://doi.org/10.1109/BigComp48618.2020.00-89
Marvasti-Zadeh, S.M., et al.: Deep learning for visual tracking: a comprehensive survey. IEEE Trans. Intell. Transp. Syst. (2021). https://doi.org/10.1109/TITS.2020.3046478
Jo, J., Jeong, S., Kang, P.: Benchmarking GPU-accelerated edge devices. In: Proceedings - 2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020, pp. 117–120 (2020). https://doi.org/10.1109/BigComp48618.2020.00-89
Bock, C., Moor, M., Jutzeler, C.R., Borgwardt, K.: Machine learning for biomedical time series classification: from shapelets to deep learning. In: Cartwright, H. (ed.) Artificial Neural Networks. MMB, vol. 2190, pp. 33–71. Springer, New York (2021). https://doi.org/10.1007/978-1-0716-0826-5_2
Thiollière, R., et al.: A hybrid dynamic time warping-deep neural network architecture for unsupervised acoustic modelling. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2015-January(2), pp. 3179–3183 (2015). https://doi.org/10.21437/interspeech.2015-640
Barnard, E., et al.: The NCHLT speech corpus of the South African languages. In: Spoken Language Technologies for Under-Resourced Languages, (May), pp. 194–200 (2014)
Siddhant, A., Jyothi, P., Ganapathy, S.: Leveraging native language speech for accent identification using deep Siamese networks. In: 2017 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2017 - Proceedings, 2018-January, pp. 621–628 (2018). https://doi.org/10.1109/ASRU.2017.8268994
Jindal, S., et al.: Siamese networks for chromosome classification. In: Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017, 2018-January, pp. 72–81 (2017). https://doi.org/10.1109/ICCVW.2017.17
Zheng, W., et al.: SENSE: Siamese neural network for sequence embedding and alignment-free comparison. Bioinformatics 35(11), 1820–1828 (2019). https://doi.org/10.1093/bioinformatics/bty887
Jeon, M., et al.: ReSimNet: drug response similarity prediction using Siamese neural networks. Bioinformatics 35(24), 5249–5256 (2019). https://doi.org/10.1093/bioinformatics/btz411
Sun, Z., et al.: Embedded spectral descriptors: learning the point-wise correspondence metric via Siamese neural networks. J. Comput. Des. Eng. 7(1), 18–29 (2020). https://doi.org/10.1093/jcde/qwaa003
Kassis, M., Nassour, J., El-Sana, J.: Writing Style Invariant Deep Learning Model for Historical Manuscripts Alignment (2018)
Cheng, G., et al.: Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3735–3756 (2020). https://doi.org/10.1109/JSTARS.2020.3005403
Roy, S., et al.: Siamese networks: the tale of two manifolds. In: Proceedings of the IEEE International Conference on Computer Vision, 2019-October, pp. 3046–3055 (2019). https://doi.org/10.1109/ICCV.2019.00314
Li, X., et al.: Target-aware deep tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, pp. 1369–1378 (2019). https://doi.org/10.1109/CVPR.2019.00146
Cen, M., Jung, C.: Fully convolutional siamese fusion networks for object tracking. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 3718–3722 (2018)
Yang, L., et al.: Region-based fully convolutional siamese networks for robust real-time visual tracking. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1–5 (2017)
He, A., Luo, C., Tian, X., Zeng, W.: Towards a better match in Siamese network based visual object tracker. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 132–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_7
Zhang, L., et al.: Learning the model update for siamese trackers. In: Proceedings of the IEEE International Conference on Computer Vision, 2019-October, pp. 4009–4018 (2019). https://doi.org/10.1109/ICCV.2019.00411
Xu, Y., et al.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 12549–12556 (2020). https://doi.org/10.1609/aaai.v34i07.6944
Wang, Q., et al.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, pp. 1328–1338 (2019). https://doi.org/10.1109/CVPR.2019.00142
Guo, D., Wang, J., et al.: SiamCAR: siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6268–6276 (2020). https://doi.org/10.1109/CVPR42600.2020.00630
Chen, Z., et al.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6667–6676 (2020). https://doi.org/10.1109/CVPR42600.2020.00670
Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, pp. 4586–4595 (2019). https://doi.org/10.1109/CVPR.2019.00472
Guo, D., et al.: Graph Attention Tracking (2020). http://arxiv.org/abs/2011.11204
Mishra, D., Matas, J.: The Visual Object Tracking VOT2017 Challenge Results The Visual Object Tracking VOT2017 challenge results. ICVC, vol. 1, no. November 2017, pp. 777–823 (2019). https://openaccess.thecvf.com/content_ICCVW_2019/papers/VOT/Kristan_The_Seventh_Visual_Object_Tracking_VOT2019_Challenge_Results_ICCVW_2019_paper.pdf
Kristan, M., et al.: VOT2018 results. Chinese Acad. Sci. 26(1), 1–15 (2018). http://vision.fe.uni-lj.si/cvbase06/
Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2021). https://doi.org/10.1109/TPAMI.2019.2957464
Zhu, X., Badr, Y.: Benchmarking deep trackers on aerial videos Abu. Sensors 18(12) (2018). https://doi.org/10.3390/sxx010005
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kareem, A.A., Hammood, D.A., Alchalaby, A.A., Khamees, R.A. (2022). A Performance of Low-Cost NVIDIA Jetson Nano Embedded System in the Real-Time Siamese Single Object Tracking: A Comparison Study. In: Chaubey, N., Thampi, S.M., Jhanjhi, N.Z. (eds) Computing Science, Communication and Security. COMS2 2022. Communications in Computer and Information Science, vol 1604. Springer, Cham. https://doi.org/10.1007/978-3-031-10551-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-10551-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10550-0
Online ISBN: 978-3-031-10551-7
eBook Packages: Computer ScienceComputer Science (R0)