Enriching Scholarly Knowledge with Context | SpringerLink
Skip to main content

Enriching Scholarly Knowledge with Context

  • Conference paper
  • First Online:
Web Engineering (ICWE 2022)

Abstract

Leveraging a GraphQL-based federated query service that integrates multiple scholarly communication infrastructures (specifically, DataCite, ORCID, ROR, OpenAIRE, Semantic Scholar, Wikidata and Altmetric), we develop a novel web widget based approach for the presentation of scholarly knowledge with rich contextual information. We implement the proposed approach in the Open Research Knowledge Graph (ORKG) and showcase it on three kinds of widgets. First, we devise a widget for the ORKG paper view that presents contextual information about related datasets, software, project information, topics, and metrics. Second, we extend the ORKG contributor profile view with contextual information including authored articles, developed software, linked projects, and research interests. Third, we advance ORKG comparison faceted search by introducing contextual facets (e.g. citations). As a result, the devised approach enables presenting ORKG scholarly knowledge flexibly enriched with contextual information sourced in a federated manner from numerous technologically heterogeneous scholarly communication infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.orkg.org/orkg/.

  2. 2.

    https://datacite.org/.

  3. 3.

    https://www.geonames.org/.

  4. 4.

    https://www.orkg.org/orkg/graphql-federated.

  5. 5.

    https://graph.openaire.eu/develop/api.html.

  6. 6.

    https://www.semanticscholar.org/product/api.

  7. 7.

    https://www.wikidata.org/w/api.php.

  8. 8.

    https://api.altmetric.com/.

  9. 9.

    http://www.epimorphics.com/web/tools/elda.html.

  10. 10.

    https://code.google.com/p/linkeddata-api.

  11. 11.

    https://scholexplorer.openaire.eu/.

  12. 12.

    https://www.wikidata.org/wiki/Wikidata:Main_Page.

  13. 13.

    https://openknowledgemaps.org/about.

  14. 14.

    https://unpaywall.org/.

  15. 15.

    https://zenodo.org/.

  16. 16.

    https://figshare.com/.

  17. 17.

    https://www.re3data.org/.

  18. 18.

    https://api.datacite.org/graphql.

  19. 19.

    https://commons.datacite.org/.

  20. 20.

    https://www.semanticscholar.org/.

  21. 21.

    https://www.altmetric.com/.

References

  1. Arya, D., Ha-Thuc, V., Sinha, S.: Personalized federated search at Linkedin. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 1699–1702. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2806416.2806615

  2. Burton, A., et al.: The scholix framework for interoperability in data-literature information exchange. D-Lib Mag. 23(1/2) (2017). Corporation for National Research Initiatives https://doi.org/10.1045/january2017-burton

  3. Cousijn, H., et al.: Connected research: the potential of the PID graph. Patterns 2(1), 100180 (2021)

    Article  Google Scholar 

  4. Fenner, M., Aryani, A.: Introducing the PID Graph (2019)

    Google Scholar 

  5. Haris, M., Farfar, K.E., Stocker, M., Auer, S.: Federating scholarly infrastructures with GraphQL. In: Ke, H.R., Lee, C.S., Sugiyama, K. (eds.) Towards Open and Trustworthy Digital Societies, pp. 308–324. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91669-5_24

    Chapter  Google Scholar 

  6. Haris, M., Stocker, M.: Comparison of different scholarly communication infrastructures (2022). https://doi.org/10.48366/R165794, https://www.orkg.org/orkg/comparison/R165794

  7. Hasnain, A., et al.: BioFed: federated query processing over life sciences linked open data. J. Biomed. Semant. 8, 13 (2017). https://doi.org/10.1186/s13326-017-0118-0

    Article  Google Scholar 

  8. Heibi, I., Peroni, S., Shotton, D.: Enabling text search on SparQL endpoints through Oscar. Data Sci. 2, 205–227 (2019). https://doi.org/10.3233/DS-190016

    Article  Google Scholar 

  9. Heidari, G., Ramadan, A., Stocker, M., Auer, S.: Leveraging a federation of knowledge graphs to improve faceted search in digital libraries (2021). https://doi.org/10.1007/978-3-030-86324-1_18

  10. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, e26726 (2017)

    Article  Google Scholar 

  11. Jaradeh, M.Y., et al.: Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: 10th International Conference on Knowledge Capture, K-CAP 2019. ACM (2019). https://doi.org/10.1145/3360901.3364435

  12. Khan, S., Liu, X., Shakil, K.A., Alam, M.: A survey on scholarly data: from big data perspective. Inf. Process. Manag. 53(4), 923–944 (2017)

    Article  Google Scholar 

  13. Kurteva, A., De Ribaupierre, H.: Interface to query and visualise definitions from a knowledge base. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 3–10. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_1

    Chapter  Google Scholar 

  14. Liekens, A.M., De Knijf, J., Daelemans, W., Goethals, B., De Rijk, P., Del-Favero, J.: Biograph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol. 12(6), 1–12 (2011)

    Article  Google Scholar 

  15. Manghi, P., Bolikowski, L., Manola, N., Schirrwagen, J., Smith, T.: OpenAIREplus: the European scholarly communication data infrastructure. D-Lib Mag. 18 (2012). https://doi.org/10.1045/september2012-manghi

  16. Manghi, P., Houssos, N., Mikulicic, M., Jörg, B.: The data model of the OpenAIRE scientific communication e-Infrastructure. In: Dodero, J.M., Palomo-Duarte, M., Karampiperis, P. (eds.) MTSR 2012. CCIS, vol. 343, pp. 168–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35233-1_18

    Chapter  Google Scholar 

  17. Morton, K., et al.: ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics 35(24), 5382–5384 (2019). https://doi.org/10.1093/bioinformatics/btz604

    Article  Google Scholar 

  18. Mosharraf, M., Taghiyareh, F.: Federated search engine for open educational linked data. Bull. IEEE Tech. Comm. Learn. Technol. 18(6), 6–9 (2016)

    Google Scholar 

  19. Nielsen, F.Å., Mietchen, D., Willighagen, E.: Scholia, Scientometrics and Wikidata. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10577, pp. 237–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70407-4_36

    Chapter  Google Scholar 

  20. Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate fair literature surveys with scholarly knowledge graphs. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, JCDL 2020, pp. 97–106. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3383583.3398520

  21. Safder, I., Hassan, S.U., Aljohani, N.R.: AI cognition in searching for relevant knowledge from scholarly big data, using a multi-layer perceptron and recurrent convolutional neural network model. In: Companion Proceedings of the the Web Conference 2018, pp. 251–258 (2018)

    Google Scholar 

  22. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization techniques for federated query processing on linked data. In: International Semantic Web Conference (2011)

    Google Scholar 

  23. Stocker, M., et al.: Persistent identification of instruments. Data Sci. J. 19, 1–12 (2020). https://doi.org/10.5334/dsj-2020-018

    Article  Google Scholar 

  24. Xia, F., Wang, W., Bekele, T.M., Liu, H.: Big scholarly data: a survey. IEEE Trans. Big Data 3(1), 18–35 (2017)

    Article  Google Scholar 

  25. Zaki, N., Tennakoon, C.: BioCarian: search engine for exploratory searches in heterogeneous biological databases. BMC Bioinform. 18, 435 (2017). https://doi.org/10.1186/s12859-017-1840-4

    Article  Google Scholar 

  26. Zhou, Y., De, S., Moessner, K.: Implementation of federated query processing on linked data. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 3553–3557 (2013). https://doi.org/10.1109/PIMRC.2013.6666765

Download references

Acknowledgment

This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) and TIB–Leibniz Information Centre for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haris, M., Stocker, M., Auer, S. (2022). Enriching Scholarly Knowledge with Context. In: Di Noia, T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362. Springer, Cham. https://doi.org/10.1007/978-3-031-09917-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09917-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09916-8

  • Online ISBN: 978-3-031-09917-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics