Identifying Near-Optimal Single-Shot Attacks on ICSs with Limited Process Knowledge | SpringerLink
Skip to main content

Identifying Near-Optimal Single-Shot Attacks on ICSs with Limited Process Knowledge

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

  • 1584 Accesses

Abstract

Industrial Control Systems (ICSs) rely on insecure protocols and devices to monitor and operate critical infrastructure. Prior work has demonstrated that powerful attackers with detailed system knowledge can manipulate exchanged sensor data to deteriorate performance of the process, even leading to full shutdowns of plants. Identifying those attacks requires iterating over all possible sensor values, and running detailed system simulation or analysis to identify optimal attacks. That setup allows adversaries to identify attacks that are most impactful when applied on the system for the first time, before the system operators become aware of the manipulations.

In this work, we investigate if constrained attackers without detailed system knowledge and simulators can identify comparable attacks. In particular, the attacker only requires abstract knowledge on general information flow in the plant, instead of precise algorithms, operating parameters, process models, or simulators. We propose an approach that allows single-shot attacks, i.e., near-optimal attacks that are reliably shutting down a system on the first try. The approach is applied and validated on two use cases, and demonstrated to achieve comparable results to prior work, which relied on detailed system information and simulations.

The full version of this paper can be found at https://arxiv.org/abs/2204.09106.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Simulation and results available at https://gitlab.com/eastman_tennessee/larsson.

  2. 2.

    Simulation and results available at https://gitlab.com/eastman_tennessee/luyben.

References

  1. Abbasi, A., Hashemi, M.: Ghost in the PLC designing an undetectable programmable logic controller rootkit via pin control attack. Black Hat Europe 2016, 1–35 (2016)

    Google Scholar 

  2. Adepu, S., Mathur, A.: Distributed detection of single-stage multipoint cyber attacks in a water treatment plant. In: AsiaCCS (2016)

    Google Scholar 

  3. Ahmed, C.M., Zhou, J., Mathur, A.P.: Noise matters: using sensor and process noise fingerprint to detect stealthy cyber attacks and authenticate sensors in CPS. In: ACSAC (2018)

    Google Scholar 

  4. ANSI/ASHRAE STANDARD 135–2016: A data communication protocol for building automation and control networks (2016)

    Google Scholar 

  5. Arroyo, E., Fay, A., Hoernicke, M.: A method of digitalizing engineering documents (2016)

    Google Scholar 

  6. Assante, M.J., Lee, R.M.: The industrial control system cyber kill chain, vol. 1. SANS Institute InfoSec Reading Room (2015)

    Google Scholar 

  7. Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: Attacks against process control systems: risk assessment, detection, and response. In: AsiaCCS, pp. 355–366. ACM (2011)

    Google Scholar 

  8. Chen, Y., Poskitt, C.M., Sun, J., Adepu, S., Zhang, F.: Learning-guided network fuzzing for testing cyber-physical system defences. In: ASE (2019)

    Google Scholar 

  9. Chen, Y., Xuan, B., Poskitt, C.M., Sun, J., Zhang, F.: Active fuzzing for testing and securing cyber-physical systems. In: ISSTA (2020)

    Google Scholar 

  10. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

    Article  Google Scholar 

  11. Esquivel-Vargas, H., Caselli, M., Peter, A.: BACgraph: automatic extraction of object relationships in the BACnet protocol. In: DSN (Industry Track). IEEE (2021)

    Google Scholar 

  12. Green, B., Krotofil, M., Abbasi, A.: On the significance of process comprehension for conducting targeted ICS attacks. In: CPS-SPC. ACM (2017)

    Google Scholar 

  13. Huang, Y., Cárdenas, A.A., Amin, S., Lin, Z., Tsai, H., Sastry, S.: Understanding the physical and economic consequences of attacks on control systems. Int. J. Crit. Infrastruct. Prot. 2(3), 73–83 (2009). https://doi.org/10.1016/j.ijcip.2009.06.001

    Article  Google Scholar 

  14. Konstantinou, C., Sazos, M., Maniatakos, M.: Attacking the smart grid using public information. In: LATS, pp. 105–110. IEEE (2016). https://doi.org/10.1109/LATW.2016.7483348

  15. Krotofil, M., Cárdenas, A.A.: Resilience of process control systems to cyber-physical attacks. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 166–182. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41488-6_12

    Chapter  Google Scholar 

  16. Krotofil, M., Cárdenas, A.A., Manning, B., Larsen, J.: CPS: driving cyber-physical systems to unsafe operating conditions by timing DoS attacks on sensor signals. In: ACSAC, pp. 146–155. ACM (2014). https://doi.org/10.1145/2664243.2664290

  17. Larsson, T., Hestetun, K., Hovland, E., Skogestad, S.: Self-optimizing control of a large-scale plant: the Tennessee Eastman process. Ind. Eng. Chem. Res. 40(22), 4889–4901 (2001)

    Article  Google Scholar 

  18. Lee, R.M., Assante, M.J., Conway, T.: Analysis of the cyber attack on the ukrainian power grid table of contents (2016). https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/05/20081514/E-ISAC_SANS_Ukraine_DUC_5.pdf

  19. Lin, Q., Adepu, S., Verwer, S., Mathur, A.: TABOR: a graphical model-based approach for anomaly detection in industrial control systems. In: AsiaCCS (2018)

    Google Scholar 

  20. Luyben, W.L., Tyréus, B.D., Luyben, M.L.: Plantwide Process Control. McGraw-Hill, New York (1999)

    Google Scholar 

  21. Lyman, P.R.: Plant-wide control structures for the Tennessee Eastman process. Master’s thesis, Lehigh University (1992)

    Google Scholar 

  22. Mitre: Common Weakness Enumeration: A Community-Developed List of Software & Hardware Weakness Types (2020). https://cwe.mitre.org/. Accessed 08 Sept 2020

  23. Mitre: ATT&CK® for Industrial Control Systems (2021). https://collaborate.mitre.org/attackics/. Accessed 04 Jan 2021

  24. Neo4j: Neo4j Graph Platform - The Leader in Graph Databases (2021). https://neo4j.com/. Accessed 09 Jan 2021

  25. Ricker, N.L.: Model predictive control of a continuous, nonlinear, two-phase reactor. J. Process Control 3(2), 109–123 (1993)

    Article  Google Scholar 

  26. Ricker, N.L.: Decentralized control of the Tennessee Eastman challenge process. J. Process Control 6(4), 205–221 (1996)

    Article  Google Scholar 

  27. Ricker, N.L.: Tennessee Eastman Challenge archive (2020). https://depts.washington.edu/control/LARRY/TE/download.html. Accessed 25 July 2020

  28. Sarkar, E., Benkraouda, H., Maniatakos, M.: I came, I saw, I hacked: automated generation of process-independent attacks for industrial control systems. In: AsiaCCS. ACM (2020)

    Google Scholar 

  29. Sharma, K.: Overview of Industrial Process Automation. Elsevier, Amsterdam (2016)

    Google Scholar 

  30. Tu, Y., Rampazzi, S., Hao, B., Rodriguez, A., Fu, K., Hei, X.: Trick or heat?: manipulating critical temperature-based control systems using rectification attacks. In: CCS, pp. 2301–2315. ACM (2019). https://doi.org/10.1145/3319535.3354195

  31. Urbina, D.I., Giraldo, J.A., Tippenhauer, N.O., Cárdenas, A.A.: Attacking fieldbus communications in ICS: applications to the swat testbed. In: SG-CRC. IOS Press (2016)

    Google Scholar 

  32. Wade, H.L.: Basic and Advanced Regulatory Control - System Design and Application, 3rd edn. ISA (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herson Esquivel-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esquivel-Vargas, H., Castellanos, J.H., Caselli, M., Tippenhauer, N.O., Peter, A. (2022). Identifying Near-Optimal Single-Shot Attacks on ICSs with Limited Process Knowledge. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics