Abstract
We propose an efficient oblivious transfer in the random oracle model based on public key encryption with pseudorandom public keys. The construction is as efficient as the state of art though it has a significant advantage. It has a tight security reduction to the multi-user security of the underlying public key encryption. In previous constructions, the security reduction has a multiplicative loss that amounts in at least the amount of adversarial random oracle queries. When considering this loss for a secure parameter choice, the underlying public key encryption or elliptic curve would require a significantly higher security level which would decrease the overall efficiency.
Our OT construction can be instantiated from a wide range of assumptions such as DDH, LWE, or codes based assumptions as well as many public key encryption schemes such as the NIST PQC finalists. Since tight multi-user security is a very natural requirement which many public key encryption schemes suffice, many public key encryption schemes can be straightforwardly plugged in our construction without the need of reevaluating or adapting any parameter choices.
Part of the work was done while the authors were at Visa Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In case an adversary is allowed to query inputs multiple time, \(\mathcal {S} _1\) would simply not try to program the oracle on an input that the adversary has queried already and send the output that is consistent with the previous query for that input.
References
Albrecht, M.R.: Classic McEliece. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26
Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18
Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-authenticated public-key encryption. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 442–462. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_22
Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14
Büscher, N., et al.: Secure two-party computation in a quantum world. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 461–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_23
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM, January 2012
Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26
Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993
Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_1
Chen, C., et al.: NTRU. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998
Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II: practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360 (2016). https://eprint.iacr.org/2016/360
Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3
Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious transfer and commitment with adaptive security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 277–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_10
Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_9
D’Anvers, J.-P., et al.: SABER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
David, B.M., Nascimento, A.C.A., Müller-Quade, J.: Universally composable oblivious transfer from lossy encryption and the McEliece assumptions. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 80–99. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-6_5
Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: Oblivious transfer based on the McEliece assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85093-9_11
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 205–210. Plenum Press, New York (1982)
Genç, Z.A., Iovino, V., Rial, A.: “The simplest protocol for oblivious transfer” revisited. Cryptology ePrint Archive, Report 2017/370 (2017). https://eprint.iacr.org/2017/370
Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_4
Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting, revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 159–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_6
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008
Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16
Håstad, J.: Solving simultaneous modular equations of low degree. SIAM J. Comput. 17(2), 336–341 (1988)
Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35
Hauck, E., Loss, J.: Efficient and universally composable protocols for oblivious transfer from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011 (2017). https://eprint.iacr.org/2017/1011
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_23
Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May 1989
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32
Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 117–146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_5
Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 1988
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM Press, October 2016
Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_2
Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October 2016
Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_27
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4
Mohassel, P., Rindal, P.: ABY\(^3\): a mixed protocol framework for machine learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 35–52. ACM Press, October 2018
Masny, D., Rindal, P.: Endemic oblivious transfer. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 309–326. ACM Press, November 2019
McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-N OT from programmable-once public functions. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 425–442. ACM Press, November 2020
McQuoid, I., Rosulek, M., Roy, L.: Batching base oblivious transfers. IACR Cryptol. ePrint Arch. 2021, 682 (2021)
Masny, D., Watson, G.J.: A PKI-based framework for establishing efficient MPC channels. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS 2021: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, 15–19 November 2021, pp. 1961–1980. ACM (2021)
Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40
Pan, J., Ringerud, M.: Signatures with tight multi-user security from search assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 485–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_24
Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_25
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31
Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report, Harvard University (1981)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Zaverucha, G.M.: Hybrid encryption in the multi-user setting. Cryptology ePrint Archive, Report 2012/159 (2012). https://eprint.iacr.org/2012/159
Acknowledgements
We thank James Bartusek for a discussion that led to the techniques presented in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Badrinarayanan, S., Masny, D., Mukherjee, P. (2022). Efficient and Tight Oblivious Transfer from PKE with Tight Multi-user Security. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-09234-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09233-6
Online ISBN: 978-3-031-09234-3
eBook Packages: Computer ScienceComputer Science (R0)