Abstract
In oblivious finite automata evaluation, one party holds a private automaton, and the other party holds a private string of characters. The objective is to let the parties know whether the string is accepted by the automaton or not, while keeping their inputs secret. The applications include DNA searching, pattern matching, and more. Most of the previous works are based on asymmetric cryptographic primitives, such as homomorphic encryption and oblivious transfer. These primitives are significantly slower than symmetric ones. Moreover, some protocols also require several rounds of interaction. As our main contribution, we propose an oblivious finite automata evaluation protocol via conditional disclosure of secrets (CDS), using one (potentially malicious) outsourcing server. This results in a constant-round protocol, and no heavy asymmetric-key primitives are needed. Our protocol is based on a building block called “an oblivious CDS scheme for deterministic finite automata” which we also propose in this paper. In addition, we propose a standard CDS scheme for deterministic finite automata as an independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This can be done by adding one special character marking the end of the string.
- 2.
The method in [38] can be used to transform a pattern p to a finite automaton \(LEV_d(p)\) accepts the language \(L_d(p)\) contains all strings with Levenshtein distance at most d from p. It is shown in [39] that a finite automaton for a language \(\varSigma ^*L_d(p)\varSigma ^*\) will not have too many states.
- 3.
In practice, PRF can be used to reduce the size of the common randomness.
References
Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_26
Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic finite automata from \(\sf DLIN\). In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_4
Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8
Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes for general and uniform access structures. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 441–471. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_15
Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via robust conditional disclosure of secrets. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 280–293 (2020)
Beimel, A., Peter, N.: Optimal linear multiparty conditional disclosure of secrets protocols. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 332–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_13
Bhadauria, R., Hazay, C.: Multi-clients verifiable computation via conditional disclosure of secrets. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 150–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_8
Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite automata. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166, pp. 49–64. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13739-6_4
Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_28
Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3
Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22
Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 368–383. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_24
Di Crescenzo, G., Coan, B., Kirsch, J.: Privacy-preserving deterministic automata evaluation with encrypted data blocks. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 275–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_16
Frikken, K.B.: Practical private DNA string searching and matching through efficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) DBSec 2009. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03007-9_6
Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclosure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_24
Genç, Z.A., Iovino, V., Rial, A.: The simplest protocol for oblivious transfer - revisited. Inf. Process. Lett. 161, 105975 (2020)
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25
Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 332–350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_20
Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 151–160 (1998)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)
Goldwasser, S., Ben-Or, M., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computing. In: Proceedings of the 20th STOC, pp. 1–10 (1988)
Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_25
Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_10
Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_6
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 44–61 (1989)
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9
Laud, P., Willemson, J.: Universally composable privacy preserving finite automata execution with low online and offline complexity. IACR Cryptol. ePrint Arch. 2013, 678 (2013)
Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: beyond \(\sf {NC}^1\) and towards \(\sf {NL}\). In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_9
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)
Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 699–708 (2018)
Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_25
Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_21
Mansy, D., Rindal, P.: Endemic oblivious transfer. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 309–326 (2019)
McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT from programmable-once public functions. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 425–442 (2020)
Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_25
Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol. 18(1), 1–35 (2005)
Sasakawa, H., Harada, H., duVerle, D., Arimura, H., Tsuda, K., Sakuma, J.: Oblivious evaluation of non-deterministic finite automata with application to privacy-preserving virus genome detection. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society, pp. 21–30 (2014)
Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. Int. J. Doc. Anal. Recogn. 5(1), 67–85 (2002)
Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through oblivious automata. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 519–528 (2007)
Wei, L., Reiter, M.K.: Third-party private DFA evaluation on encrypted files in the cloud. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 523–540. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_30
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE (1982)
Zhao, C., Zhao, S., Zhang, B., Jing, S., Chen, Z., Zhao, M.: Oblivious DFA evaluation on joint input and its applications. Inf. Sci. 528, 168–180 (2020)
Acknowledgments
Nuttapong Attrapadung was partly supported by JSPS KAKENHI Kiban-A Grant Number 19H01109. Kanta Matsuura was partially supported by JSPS KAKENHI Grant Number 17KT0081.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Phalakarn, K., Attrapadung, N., Matsuura, K. (2022). Efficient Oblivious Evaluation Protocol and Conditional Disclosure of Secrets for DFA. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-09234-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09233-6
Online ISBN: 978-3-031-09234-3
eBook Packages: Computer ScienceComputer Science (R0)