Abstract
We apply a method from Automated Machine Learning (AutoML), namely Neural Architecture Search (NAS), to the task of brain tumor segmentation in MRIs for the BraTS 2021 challenge. NAS methods are known to be compute-intensive, so we use a continuous and differentiable search space in order to apply a DiNTS search for optimal fully convolutional architectures. Our method obtained Dice scores of 0.9161, 0.8707 and 0.8537 for whole tumor, tumor core and enhancing tumor regions respectively on the test dataset, while requiring no manual design of the network architecture, which was found automatically from the provided training data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205 (2012). https://doi.org/10.1016/j.cancergen.2012.10.009
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017). https://doi.org/10.1093/bioinformatics/btx188
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22
Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2017)
Weng, Y., Zhou, T., Li, Y., Qiu, X.: NAS-Unet: neural architecture search for medical image segmentation. IEEE Access 7, 44247–44257 (2019). https://doi.org/10.1109/ACCESS.2019.2908991
Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: neural architecture search for volumetric medical image segmentation. In: 2019 International Conference on 3D Vision (3DV), pp. 240–248 (2019). https://doi.org/10.1109/3DV.2019.00035
Yu, Q., Yang, D., Roth, H., Bai, Y., Zhang, Y., Yuille, A.L., Xu, D.: C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation (2020)
Antonelli, M., et al.: The medical segmentation decathlon (2021)
Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning (2017)
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search (2019)
He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: DiNTS: differentiable neural network topology search for 3d medical image segmentation, March 2021
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/sdata.2017.117
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
Cox, R., et al.: A (sort of) new image data format standard: NiFTI-1, vol. 22, January 2004
Consortium, M.: MONAI: Medical open network for AI, March 2020. https://doi.org/10.5281/zenodo.4323058, https://github.com/Project-MONAI/MONAI
Liu, C., et al.: Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation (2019)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks (2017)
Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Micikevicius, P., et al.: Mixed precision training (2018)
Howard, A., et al.: Searching for MobileNetV3 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Milesi, A., Futrega, M., Marcinkiewicz, M., Ribalta, P. (2022). Brain Tumor Segmentation Using Neural Network Topology Search. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-08999-2_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08998-5
Online ISBN: 978-3-031-08999-2
eBook Packages: Computer ScienceComputer Science (R0)