Encodability Criteria for Quantum Based Systems | SpringerLink
Skip to main content

Encodability Criteria for Quantum Based Systems

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2022)

Abstract

Quantum based systems are a relatively new research area for that different modelling languages including process calculi are currently under development. Encodings are often used to compare process calculi. Quality criteria are used then to rule out trivial or meaningless encodings. In this new context of quantum based systems, it is necessary to analyse the applicability of these quality criteria and to potentially extend or adapt them. As a first step, we test the suitability of classical criteria for encodings between quantum based languages and discuss new criteria.

Concretely, we present an encoding, from a sublanguage of CQP into qCCS. We show that this encoding satisfies compositionality, name invariance (for channel and qubit names), operational correspondence, divergence reflection, success sensitiveness, and that it preserves the size of quantum registers. Then we show that there is no encoding from qCCS into CQP (or its sublanguage) that is compositional, operationally corresponding, and success sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Richard, J., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

  2. Bisping, B., Nestmann, U., Peters, K.: Coupled similarity: the first 32 years. Acta Informatica, 439–463 (2019). https://doi.org/10.1007/s00236-019-00356-4

  3. Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. ACM Trans. Program. Lang. Syst. 34(4) (2012). https://doi.org/10.1145/2400676.2400680

  4. Gay, S.J.: Quantum programming languages: survey and bibliography. Mathe. Struct. Comput. Sci. 16(4), 581–600 (2006). https://doi.org/10.1017/S0960129506005378

    Article  MathSciNet  MATH  Google Scholar 

  5. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of SIGPLAN-SIGACT (ACM), pp. 145–157 (2005). https://doi.org/10.1145/1040305.1040318

  6. Gorla, D.: Towards a unified approach to encodability and separation results for process calculi. Inf. Comput. 208(9), 1031–1053 (2010). https://doi.org/10.1016/j.ic.2010.05.002

    Article  MathSciNet  MATH  Google Scholar 

  7. Gruska, J.: Quantum computing. In: Wiley Encyclopedia of Computer Science and Engineering. Wiley (2008). https://doi.org/10.1002/9780470050118.ecse720

  8. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of CF, pp. 111–119 (2004). https://doi.org/10.1145/977091.977108

  9. Kouzapas, D., Pérez, J.A., Yoshida, N.: On the relative expressiveness of higher-order session processes. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 446–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_18

    Chapter  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University Press, Cambridge (2010)

    Google Scholar 

  11. Peters, K.: Comparing process calculi using encodings. In: Proceedings of EXPRESS/SOS. EPCTS, vol. 300, pp. 19–38 (2019). https://doi.org/10.4204/EPTCS.300.2

  12. Peters, K., van Glabbeek, R.: Analysing and comparing encodability criteria. In: Crafa, S., Gebler, D. (eds.) Proceedings of EXPRESS/SOS. EPTCS, vol. 190, pp. 46–60 (2015). https://doi.org/10.4204/EPTCS.190.4

  13. Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 310–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_18

    Chapter  Google Scholar 

  14. Plotkin, G.D.: A structural approach to operational semantics. Log. Algebraic Methods Program. 60–61, 17–139 (2004)

    MathSciNet  MATH  Google Scholar 

  15. de Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D., Gisin, N.: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004)

    Google Scholar 

  16. Rieffel, E.G., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300–335 (2000). https://doi.org/10.1145/367701.367709

    Article  Google Scholar 

  17. Schmitt, A., Peters, K., Deng, Y.: Encodability criteria for quantum based systems (technical report). Technical report, TU Darmstadt, Germany (2022). https://doi.org/10.48550/ARXIV.2204.06068. https://arxiv.org/abs/2204.06068

  18. Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM Trans. Comput. Log. 10(3), 19:1–19:36 (2009). https://doi.org/10.1145/1507244.1507249

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Schmitt , Kirstin Peters or Yuxin Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmitt, A., Peters, K., Deng, Y. (2022). Encodability Criteria for Quantum Based Systems. In: Mousavi, M.R., Philippou, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2022. Lecture Notes in Computer Science, vol 13273. Springer, Cham. https://doi.org/10.1007/978-3-031-08679-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08679-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08678-6

  • Online ISBN: 978-3-031-08679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics