Abstract
In this paper, we present a framework that can automatically classify the transportation mode based only on the GPS trajectory of an individual. We intend to show that the extraction of extra features besides speed, acceleration, and the bearing rate [35, 36] enables many classifiers to achieve very efficient generalization. We apply machine learning algorithms, Recurrent Neural Network and Convolutional Neural Network. Finally, we compare our approach with state-of-art transportation mode prediction strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anda, C., Erath, A., Fourie, P.J.: Transport modelling in the age of big data. Int. J. Urban Sci. 21(June), 19–42 (2017)
Bantis, T., Haworth, J.: Who you are is how you travel: a framework for transportation mode detection using individual and environmental characteristics. Transp. Res. Part C Emerg. Technol. 80, 286–309 (2017)
Dabiri, S., Heaslip, K.: Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res. Part C Emerg. Technol. 86(August 2017), 360–371 (2018). https://doi.org/10.1016/j.trc.2017.11.021
Dabiri, S., Lu, C.T., Heaslip, K., Reddy, C.K.: Semi-supervised deep learning approach for transportation mode identification using GPS trajectory data. IEEE Trans. Knowl. Data Eng. 32, 1010–1023 (2020)
Eftekhari, H.R., Ghatee, M.: An inference engine for smartphones to preprocess data and detect stationary and transportation modes. Transp. Res. Part C Emerg. Technol. 69, 313–327 (2016)
Endo, Y., Toda, H., Nishida, K., Kawanobe, A.: Deep feature extraction from trajectories for transportation mode estimation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 54–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2_5
Endo, Y., Toda, H., Nishida, K., Kawanobe, A.: Deep feature extraction from trajectories for transportation mode estimation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI and LNB), vol. 9652, pp. 54–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2_5
Etemad, M., Soares Júnior, A., Matwin, S.: Predicting transportation modes of GPS trajectories using feature engineering and noise removal. In: Bagheri, E., Cheung, J.C.K. (eds.) Canadian AI 2018. LNCS (LNAI and LNB), vol. 10832, pp. 259–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89656-4_24
Ettaouil, M., Ghanou, Y.: Neural architectures optimization and genetic algorithms. WSEAS Trans. Comput. 8, 526–537 (2009)
Ettaouil, M., Ghanou, Y., Elmoutaouakil, K.: A new architecture optimization model for the Kohonen networks and clustering (2011)
Ghanou, Y., Bencheikh, G.: Architecture optimization and training for the multilayer perceptron using ant system (2016)
Gong, H., Chen, C., Bialostozky, E., Lawson, C.T.: A GPS/GIS method for travel mode detection in New York City. Comput. Environ. Urban Syst. 36, 131–139 (2012)
Jahangiri, A., Rakha, H.: Developing a support vector machine (SVM) classifier for transportation mode identification using mobile phone sensor data. In: 2014 TRB Annual Meeting Compendium of Paper (2014)
Khalifi, H., Elqadi, A., Ghanou, Y.: Support vector machines for a new hybrid information retrieval system. Proc. Comput. Sci. 127, 139–145 (2018)
Nham, B., Siangliulue, K., Yeung, S.: Predicting mode of transport from iPhone accelerometer data. Stanford University (2011)
Schafer, R.W.: What is a Savitzky-Golay filter? IEEE Signal Process. Mag. 28, 111–117 (2011)
Schuessler, N., Axhausen, K.: Processing raw data from global positioning systems without additional information. Transp. Res. Rec. 2105, 28–36 (2009)
Shafique, M.A., Hato, E.: A comparison among various classification algorithms for travel mode detection using sensors’ data collected by smartphones. In: CUPUM 2015 - 14th International Conference on Computers in Urban Planning and Urban Management (2015)
Shafique, M.A., Hato, E.: Classification of travel data with multiple sensor information using random forest. Transp. Res. Proc. 22, 144–153 (2017)
Shah, R.C., Wan, C.Y., Lu, H., Nachman, L.: Classifying the mode of transportation on mobile phones using GIS information. In: UbiComp 2014 - Proceedings of 2014 ACM International Joint Conference on Pervasive Ubiquitous Computing (2014)
Simoncini, M., Taccari, L., Sambo, F., Bravi, L., Salti, S., Lori, A.: Vehicle classification from low-frequency GPS data with recurrent neural networks. Transp. Res. Part C Emerg. Technol. 91, 176–191 (2018)
Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: GIS Proceeding of ACM International Symposium on Advances in Geographic Information Systems (2011)
Wang, H., Liu, G., Duan, J., Zhang, L.: Detecting transportation modes using deep neural network. IEICE Trans. Inf. Syst. 100, 1132–1135 (2017)
Wu, L., Yang, B., Jing, P.: Travel mode detection based on GPS raw data collected by smartphones: a systematic review of the existing methodologies (2016)
Xiao, G., Juan, Z., Zhang, C.: Travel mode detection based on GPS track data and Bayesian networks. Comput. Environ. Urban Syst. 54, 14–22 (2015)
Xiao, Z., Wang, Y., Fu, K., Wu, F.: Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS Int. J. Geo-Inf. 6, 57 (2017)
Yang, X., Stewart, K., Tang, L., Xie, Z., Li, Q.: A review of GPS trajectories classification based on transportation mode. Sens. (Switz.) 18(11), 1–20 (2018)
Yazdizadeh, A., Patterson, Z., Farooq, B.: An automated approach from GPS traces to complete trip information. Int. J. Transp. Sci. Technol. 8(1), 82–100 (2019). https://doi.org/10.1016/j.ijtst.2018.08.003
Yu, J.J.: Travel mode identification with GPS trajectories using wavelet transform and deep learning. IEEE Trans. Intell. Transp. Syst. 22, 1093–1103 (2019)
Zhang, R., Xie, P., Wang, C., Liu, G., Wan, S.: Classifying transportation mode and speed from trajectory data via deep multi-Scale learning. Comput. Netw. 162, 106861 (2019). https://doi.org/10.1016/j.comnet.2019.106861
Zheng, Y.: GPS Trajectories with transportation mode labels (2010)
Zheng, Y., Fu, H.: Geolife GPS trajectory dataset - user guide (2011)
Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: UbiComp 2008 - Proceedings of 10th International Conference on Ubiquitous Computing (2008)
Zheng, Y., Liu, L., Wang, L., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs Jing. In: Proceedings of 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 2012 (2008)
Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw GPS data. In: WWW (2008)
Zheng, Y., Xie, X., Ma, W.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–40 (2010). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:GeoLife+:+A+Collaborative+Social+Networking+Service+among+User+,+Location+and+Trajectory#0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kabiri, H., Ghanou, Y. (2022). Predicting the Mode of Transport from GPS Trajectories. In: Lazaar, M., Duvallet, C., Touhafi, A., Al Achhab, M. (eds) Proceedings of the 5th International Conference on Big Data and Internet of Things. BDIoT 2021. Lecture Notes in Networks and Systems, vol 489. Springer, Cham. https://doi.org/10.1007/978-3-031-07969-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-07969-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07968-9
Online ISBN: 978-3-031-07969-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)