Guaranteed Output in $$O(\sqrt{n})$$ Rounds for Round-Robin Sampling Protocols | SpringerLink
Skip to main content

Guaranteed Output in \(O(\sqrt{n})\) Rounds for Round-Robin Sampling Protocols

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13275))

Abstract

We introduce a notion of round-robin secure sampling that captures several protocols in the literature, such as the “powers-of-tau” setup protocol for pairing-based polynomial commitments and zk-SNARKs, and certain verifiable mixnets.

Due to their round-robin structure, protocols of this class inherently require n sequential broadcast rounds, where n is the number of participants.

We describe how to compile them generically into protocols that require only \(O(\sqrt{n})\) broadcast rounds. Our compiled protocols guarantee output delivery against any dishonest majority. This stands in contrast to prior techniques, which require \(\varOmega (n)\) sequential broadcasts in most cases (and sometimes many more). Our compiled protocols permit a certain amount of adversarial bias in the output, as all sampling protocols with guaranteed output must, due to Cleve’s impossibility result (STOC’86). We show that in the context of the aforementioned applications, this bias is harmless.

The full version of this paper is available at https://eprint.iacr.org/2022/257.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Surprisingly, if a constant fraction of the parties are assumed to be honest, this linear round complexity can be reduced to any super-constant function; e.g., \(O(\log ^*n)\) [24].

  2. 2.

    Formally, there exists a polynomial p such that every attack on the “real-world” execution of the protocol can be simulated in the “ideal-world” computation such that the output of both computations cannot be distinguished in polynomial-time with more than \(1/p({\lambda })\) probability.

  3. 3.

    Where \(G\) is a generator of a group of order q written in additive notation, and x is a shared secret from \(\mathbb {Z} _q\).

  4. 4.

    Formally, every party requests the output from the functionality, and the adversary can instruct the functionality to ignore a polynomially-bounded number of such requests [45].

  5. 5.

    Kate et al. actually present two related schemes. The first uses the powers of tau, exactly as we have presented it, and the second requires the powers, plus the powers again with a secret multiplicative offset (or, alternatively, relative to a second group generator). It is easy to modify our construction to satisfy the second scheme, and so for clarity we focus on the first, simpler one.

References

  1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_21

    Chapter  Google Scholar 

  2. Asharov, G.: Towards characterizing complete fairness in secure two-party computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_13

    Chapter  Google Scholar 

  3. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization of fairness in secure two-party computation of Boolean functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_10

    Chapter  MATH  Google Scholar 

  4. Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 243–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_14

    Chapter  MATH  Google Scholar 

  5. Awerbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to implement Bracha’s \({O}(\log n)\) Byzantine agreement algorithm (1985). Unpublished manuscript

    Google Scholar 

  6. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11

    Chapter  Google Scholar 

  7. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a foundation of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_15

    Chapter  MATH  Google Scholar 

  8. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation without honest majority and the best of both worlds. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_16

    Chapter  Google Scholar 

  9. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_1

    Chapter  Google Scholar 

  10. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: IEEE S&P (2015)

    Google Scholar 

  11. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

    Chapter  Google Scholar 

  12. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_5

    Chapter  Google Scholar 

  13. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK parameters in the random beacon model. IACR Cryptol. ePrint Arch., 2017 (2017)

    Google Scholar 

  14. Boyle, E., Klein, S., Rosen, A., Segev, G.: Securing Abe’s mix-net against malicious verifiers via witness indistinguishability. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 274–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_15

    Chapter  Google Scholar 

  15. Bracha, G.: An O(log n) expected rounds randomized Byzantine generals protocol. JACM 34(4), 910–920 (1987)

    Article  MathSciNet  Google Scholar 

  16. Buchbinder, N., Haitner, I., Levi, N., Tsfadia, E.: Tighter analysis and the many-party case. In: SODA, Fair coin flipping (2017)

    Google Scholar 

  17. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS (2001)

    Google Scholar 

  18. Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. IACR Cryptol. ePrint Arch. (2020)

    Google Scholar 

  19. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret. Comput. Sci. 777, 155–183 (2019)

    Article  MathSciNet  Google Scholar 

  20. Chen, M., et al.: Multiparty generation of an RSA modulus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_3

    Chapter  Google Scholar 

  21. Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a dishonest majority. In: IEEE S&P, pp. 590–607 (2021)

    Google Scholar 

  22. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  23. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC (1986)

    Google Scholar 

  24. Cohen, R., Haitner, I., Omri, E., Rotem, L.: From fairness to full security in multiparty computation. J. Cryptol. 35(1), 1–70 (2022)

    Article  MathSciNet  Google Scholar 

  25. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multiparty computation. J. Cryptol. 30(4), 1157–1186 (2017)

    Article  MathSciNet  Google Scholar 

  26. Dachman-Soled, D.: Revisiting fairness in MPC: polynomial number of parties and general adversarial structures. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 595–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_21

    Chapter  MATH  Google Scholar 

  27. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_10

    Chapter  Google Scholar 

  28. Fouque, P.-A., Stern, J.: One round threshold discrete-log key generation without private channels. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_22

    Chapter  MATH  Google Scholar 

  29. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  30. Gabizon, A, Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch. (2019)

    Google Scholar 

  31. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2006). https://doi.org/10.1007/s00145-006-0347-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of Pedersen’s distributed key generation protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 373–390. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_26

    Chapter  Google Scholar 

  33. Goldreich, O.: Foundations of Cryptography - VOLUME 2: Basic Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  34. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)

    Google Scholar 

  35. Dov Gordon, S., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. In: STOC (2008)

    Google Scholar 

  36. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_2

    Chapter  Google Scholar 

  37. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_8

    Chapter  Google Scholar 

  38. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  39. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

    Chapter  Google Scholar 

  40. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. JACM 59(3), 1–35 (2012)

    Article  MathSciNet  Google Scholar 

  41. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/10.1007/s001459910003

    Article  MathSciNet  MATH  Google Scholar 

  42. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_21

    Chapter  Google Scholar 

  43. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  44. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  45. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

    Chapter  Google Scholar 

  46. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_25

    Chapter  Google Scholar 

  47. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. IACR Cryptol. ePrint Arch., 2021 (2021)

    Google Scholar 

  48. Liu-Zhang, C.-D., Maurer, U.: Synchronous constructive cryptography. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 439–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_16

    Chapter  MATH  Google Scholar 

  49. Makriyannis, N.: On the classification of finite Boolean functions up to fairness. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 135–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_9

    Chapter  Google Scholar 

  50. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks from linear-size universal and updatable structured reference strings. In: CCS (2019)

    Google Scholar 

  51. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Chapter  Google Scholar 

  52. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

    Chapter  Google Scholar 

  53. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_1

    Chapter  Google Scholar 

  54. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Alon Rosen for a helpful discussion. We furthermore thank an anonymous reviewer for making us aware of certain practical optimizations used in the full version of this paper. Ran Cohen’s research is supported in part by NSF grant no. 2055568. The other authors are supported in part by NSF grants 1816028 and 1646671.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Doerner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, R., Doerner, J., Kondi, Y., Shelat, A. (2022). Guaranteed Output in \(O(\sqrt{n})\) Rounds for Round-Robin Sampling Protocols. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06944-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06943-7

  • Online ISBN: 978-3-031-06944-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics