Abstract
We introduce a notion of round-robin secure sampling that captures several protocols in the literature, such as the “powers-of-tau” setup protocol for pairing-based polynomial commitments and zk-SNARKs, and certain verifiable mixnets.
Due to their round-robin structure, protocols of this class inherently require n sequential broadcast rounds, where n is the number of participants.
We describe how to compile them generically into protocols that require only \(O(\sqrt{n})\) broadcast rounds. Our compiled protocols guarantee output delivery against any dishonest majority. This stands in contrast to prior techniques, which require \(\varOmega (n)\) sequential broadcasts in most cases (and sometimes many more). Our compiled protocols permit a certain amount of adversarial bias in the output, as all sampling protocols with guaranteed output must, due to Cleve’s impossibility result (STOC’86). We show that in the context of the aforementioned applications, this bias is harmless.
The full version of this paper is available at https://eprint.iacr.org/2022/257.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Surprisingly, if a constant fraction of the parties are assumed to be honest, this linear round complexity can be reduced to any super-constant function; e.g., \(O(\log ^*n)\) [24].
- 2.
Formally, there exists a polynomial p such that every attack on the “real-world” execution of the protocol can be simulated in the “ideal-world” computation such that the output of both computations cannot be distinguished in polynomial-time with more than \(1/p({\lambda })\) probability.
- 3.
Where \(G\) is a generator of a group of order q written in additive notation, and x is a shared secret from \(\mathbb {Z} _q\).
- 4.
Formally, every party requests the output from the functionality, and the adversary can instruct the functionality to ignore a polynomially-bounded number of such requests [45].
- 5.
Kate et al. actually present two related schemes. The first uses the powers of tau, exactly as we have presented it, and the second requires the powers, plus the powers again with a secret multiplicative offset (or, alternatively, relative to a second group generator). It is easy to modify our construction to satisfy the second scheme, and so for clarity we focus on the first, simpler one.
References
Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_21
Asharov, G.: Towards characterizing complete fairness in secure two-party computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_13
Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization of fairness in secure two-party computation of Boolean functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_10
Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 243–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_14
Awerbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to implement Bracha’s \({O}(\log n)\) Byzantine agreement algorithm (1985). Unpublished manuscript
Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11
Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a foundation of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_15
Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation without honest majority and the best of both worlds. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_16
Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_1
Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: IEEE S&P (2015)
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4
Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_5
Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK parameters in the random beacon model. IACR Cryptol. ePrint Arch., 2017 (2017)
Boyle, E., Klein, S., Rosen, A., Segev, G.: Securing Abe’s mix-net against malicious verifiers via witness indistinguishability. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 274–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_15
Bracha, G.: An O(log n) expected rounds randomized Byzantine generals protocol. JACM 34(4), 910–920 (1987)
Buchbinder, N., Haitner, I., Levi, N., Tsfadia, E.: Tighter analysis and the many-party case. In: SODA, Fair coin flipping (2017)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS (2001)
Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. IACR Cryptol. ePrint Arch. (2020)
Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret. Comput. Sci. 777, 155–183 (2019)
Chen, M., et al.: Multiparty generation of an RSA modulus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_3
Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a dishonest majority. In: IEEE S&P, pp. 590–607 (2021)
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC (1986)
Cohen, R., Haitner, I., Omri, E., Rotem, L.: From fairness to full security in multiparty computation. J. Cryptol. 35(1), 1–70 (2022)
Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multiparty computation. J. Cryptol. 30(4), 1157–1186 (2017)
Dachman-Soled, D.: Revisiting fairness in MPC: polynomial number of parties and general adversarial structures. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 595–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_21
Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_10
Fouque, P.-A., Stern, J.: One round threshold discrete-log key generation without private channels. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_22
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Gabizon, A, Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch. (2019)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2006). https://doi.org/10.1007/s00145-006-0347-3
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of Pedersen’s distributed key generation protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 373–390. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_26
Goldreich, O.: Foundations of Cryptography - VOLUME 2: Basic Applications. Cambridge University Press, Cambridge (2004)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)
Dov Gordon, S., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. In: STOC (2008)
Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_2
Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_8
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24
Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. JACM 59(3), 1–35 (2012)
Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/10.1007/s001459910003
Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_21
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27
Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_25
Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. IACR Cryptol. ePrint Arch., 2021 (2021)
Liu-Zhang, C.-D., Maurer, U.: Synchronous constructive cryptography. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 439–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_16
Makriyannis, N.: On the classification of finite Boolean functions up to fairness. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 135–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_9
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks from linear-size universal and updatable structured reference strings. In: CCS (2019)
Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47
De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33
Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_1
Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17
Acknowledgements
We thank Alon Rosen for a helpful discussion. We furthermore thank an anonymous reviewer for making us aware of certain practical optimizations used in the full version of this paper. Ran Cohen’s research is supported in part by NSF grant no. 2055568. The other authors are supported in part by NSF grants 1816028 and 1646671.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Cohen, R., Doerner, J., Kondi, Y., Shelat, A. (2022). Guaranteed Output in \(O(\sqrt{n})\) Rounds for Round-Robin Sampling Protocols. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-06944-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06943-7
Online ISBN: 978-3-031-06944-4
eBook Packages: Computer ScienceComputer Science (R0)