Abstract
Structured random strings (SRSs) and correlated randomness are important for many cryptographic protocols. In settings where interaction is expensive, it is desirable to obtain such randomness in as few rounds of communication as possible; ideally, simply by exchanging one reusable round of messages which can be considered public keys.
In this paper, we describe how to generate any SRS or correlated randomness in such a single round of communication, using, among other things, indistinguishability obfuscation. We introduce what we call a distributed sampler, which enables \(n\) parties to sample a single public value (SRS) from any distribution. We construct a semi-malicious distributed sampler in the plain model, and use it to build a semi-malicious public-key PCF (Boyle et al., FOCS 2020) in the plain model. A public-key PCF can be thought of as a distributed correlation sampler; instead of producing a public SRS, it gives each party a private random value (where the values satisfy some correlation).
We introduce a general technique called an anti-rusher which compiles any one-round protocol with semi-malicious security without inputs to a similar one-round protocol with active security by making use of a programmable random oracle. This gets us actively secure distributed samplers and public-key PCFs in the random oracle model.
Finally, we explore some tradeoffs. Our first PCF construction is limited to reverse-sampleable correlations (where the random outputs of honest parties must be simulatable given the random outputs of corrupt parties); we additionally show a different construction without this limitation, but which does not allow parties to hold secret parameters of the correlation. We also describe how to avoid the use of a random oracle at the cost of relying on sub-exponentially secure indistinguishability obfuscation.
Supported by the Independent Research Fund Denmark (DFF) under project number 0165-00107B (C3PO), the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC), and a starting grant from Aarhus University Research Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This requirement is inherent; otherwise, an adversary would be able to take the message an honest party sent, and recompute the function with that party’s input while varying the other inputs. NIMPC does allow similar recomputation attacks, but only with all honest party inputs fixed, which a PKI can be used to enforce.
- 2.
By sub-exponential security, we mean that no PPT adversary cannot break the security of that primitive with probability better than \(2^{-\mathrm {\lambda }^c}\) for a constant c.
- 3.
Note that formally, in the presence of malicious adversaries, preprocessing garbled circuits in this way requires the garbling scheme to be adaptively secure [BHR12].
- 4.
In the examples above, reverse-samplability is possible for pseudorandom secret-sharing, but not for garbled circuits, since we should not be able to find valid input wire labels when given only a garbled circuit.
References
Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_2
Abram, D., Scholl, P., Yakoubov, S.: Distributed (correlation) samplers: how to remove a trusted dealer in one round. Cryptology ePrint Archive, Report 2022/? (2022)
Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: ACM CCS 2019. ACM Press (November 2019)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseudorandom functions from variable-density LPN. In: 61st FOCS. IEEE Computer Society Press (November 2020)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM CCS 2018. ACM Press (October 2018)
Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_10
Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_16
Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of the 42nd FOCS. IEEE Computer Society Press (October 2001)
Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19
Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_19
Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4
Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: Proceedings of the 31st FOCS. IEEE Computer Society Press (October 1990)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of the 54th FOCS. IEEE Computer Society Press (October 2013)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (4) (1986)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th ACM STOC. ACM Press (May 1987)
Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_18
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6
Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_6
Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-interactive multiparty computation without correlated randomness. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 181–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_7
Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_24
Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Proceedings of the ITCS 2015. ACM (January 2015)
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pp. 60–73, New York, NY, USA. Association for Computing Machinery (2021)
Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the ACM CCS 2013. ACM Press (November 2013)
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building applications of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_6
Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Abram, D., Scholl, P., Yakoubov, S. (2022). Distributed (Correlation) Samplers: How to Remove a Trusted Dealer in One Round. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-06944-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06943-7
Online ISBN: 978-3-031-06944-4
eBook Packages: Computer ScienceComputer Science (R0)