Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection | SpringerLink
Skip to main content

Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Currently, the best object detection results are achieved by supervised deep learning methods, however, these methods depend on annotated training data. With the synthetic data generation approach, we intend to mimic the real data characteristics and diversify the dataset by a systematic rendering of highly realistic synthetic pictures. We systematically explore how different combinations and portions of real and synthetic datasets affect object detectors performance. The developed synthetic data generation framework shows promising results in deep learning-based object detection tasks and can supplement real data when the variety of real training data is insufficient. However, when synthetic data ratio increases over real data ratio, a decrease in average precision can be observed, which has the most affect on 0.75-0.95 IoU threshold range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlexeyAB: darknet. https://github.com/AlexeyAB/darknet. Accessed 20 Dec 2021

  2. Alonso, M., Izaguirre, A., Graña, M.: Current research trends in robot grasping and bin picking. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC, vol. 771, pp. 367–376. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_35

    Chapter  Google Scholar 

  3. Arents, J., Cacurs, R., Greitans, M.: Integration of computervision and artificial intelligence subsystems with robot operating system based motion planning for industrial robots. Autom. Control Comput. Sci. 52(5), 392–401 (2018)

    Article  Google Scholar 

  4. Arents, J., Greitans, M.: Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci. 12(2), 937 (2022). https://doi.org/10.3390/app12020937

  5. Arents, J., Greitans, M., Lesser, B.: Artificial Intelligence for Digitising Industry, Applications, chap. Construction of a Smart Vision-Guided Robot System for Manipulation in a Dynamic Environment, pp. 205–220. https://www.riverpublishers.com/book_details.php?book_id=967, https://doi.org/10.13052/rp-9788770226639 (2021)

  6. Buchholz, D.: Bin-Picking - New Approaches for a Classical Problem. Ph.D. thesis, \(\tilde{(}{\rm Jul}\,2015)\), https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00060699

  7. Buls, E., Kadikis, R., Cacurs, R., \(\bar{{\rm A}}\)rents, J.: Generation of synthetic training data for object detection in piles. In: Eleventh International Conference on Machine Vision (ICMV 2018). vol. 11041, pp. 533–540. International Society for Optics and Photonics, SPIE (2019). https://doi.org/10.1117/12.2523203, https://doi.org/10.1117/12.2523203

  8. Chu, F.J., Xu, R., Vela, P.A.: Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 3(4), 3355–3362 (2018)

    Article  Google Scholar 

  9. Das, A., Kandan, S., Yogamani, S., Krizek, P.: Design of real-time semantic segmentation decoder for automated driving (2019)

    Google Scholar 

  10. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2011)

    Article  Google Scholar 

  11. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1310–1319 (2017). https://doi.org/10.1109/ICCV.2017.146

  12. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)

    Google Scholar 

  14. He, R., Rojas, J., Guan, Y.: A 3D object detection and pose estimation pipeline using RGB-D images. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1527–1532. IEEE (2017)

    Google Scholar 

  15. Kleeberger, K., Landgraf, C., Huber, M.F.: Large-scale 6D object pose estimation dataset for industrial bin-picking (2019)

    Google Scholar 

  16. Luenendonk, M.: Industry 4.0: definition, design principles, challenges, and the future of employment (2019). Accessed 24 2020

    Google Scholar 

  17. Mousavian, A., Eppner, C., Fox, D.: 6-dof graspnet: variational grasp generation for object manipulation (2019)

    Google Scholar 

  18. Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242 (2020). https://doi.org/10.1109/IWSSIP48289.2020.9145130

  19. Pérez, L., Rodríguez, Í., Rodríguez, N., Usamentiaga, R., García, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3), 335 (2016)

    Article  Google Scholar 

  20. Qiu, W., Yuille, A.: UnrealCV: connecting computer vision to unreal engine. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 909–916. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_75

    Chapter  Google Scholar 

  21. Redmon, J.: Darknet: open source neural networks in c. http://pjreddie.com/darknet/ (2013–2016)

  22. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  23. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (06 2015). https://doi.org/10.1109/TPAMI.2016.2577031

  25. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  26. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. In: CoRL (2018)

    Google Scholar 

  27. Wang, K., Shi, F., Wang, W., Nan, Y., Lian, S.: Synthetic data generation and adaption for object detection in smart vending machines. CoRR abs/1904.12294 http://arxiv.org/abs/1904.12294 (2019)

  28. Xu, Z., Li, B., Yuan, Y., Dang, A.: Beta R-CNN: Looking into pedestrian detection from another perspective. In: NeurIPS (2020)

    Google Scholar 

  29. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  30. YunYang1994: tensorflow-yolov3. https://github.com/YunYang1994/tensorflow-yolov3 Accessed Dec 20 2021

  31. Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. In: Digital Signal Processing, p. 103514 (2022)

    Google Scholar 

  32. Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and classification in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2110–2118 (2016)

    Google Scholar 

  33. Zoghlami, F., Kurrek, P., Jocas, M., Masala, G., Salehi, V.: Design of a deep post gripping perception framework for industrial robots. J. Comput. Inf. Sci. Eng. 21, 1–14 (2020). https://doi.org/10.1115/1.4048204

Download references

Acknowledgements

The work has been performed in the project AI4DI: Artificial Intelligence for Digitizing Industry, under grant agreement No 826060. The project is co-funded by grants from Germany, Austria, Finland, France, Norway, Latvia, Belgium, Italy, Switzerland, and Czech Republic and - Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU). In Austria the project was also funded by the program “IKT der Zukunft” of the Austrian Federal Ministry for Climate Action (BMK). Parts of the publication was written at Virtual Vehicle Research GmbH in Graz and partially funded within the COMET K2 Competence Centers for Excellent Technologies from the Austrian Federal Ministry for Climate Action (BMK), the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), the Province of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion Agency (FFG) has been authorised for the programme management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Arents .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arents, J., Lesser, B., Bizuns, A., Kadikis, R., Buls, E., Greitans, M. (2022). Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics