Abstract
Currently, the best object detection results are achieved by supervised deep learning methods, however, these methods depend on annotated training data. With the synthetic data generation approach, we intend to mimic the real data characteristics and diversify the dataset by a systematic rendering of highly realistic synthetic pictures. We systematically explore how different combinations and portions of real and synthetic datasets affect object detectors performance. The developed synthetic data generation framework shows promising results in deep learning-based object detection tasks and can supplement real data when the variety of real training data is insufficient. However, when synthetic data ratio increases over real data ratio, a decrease in average precision can be observed, which has the most affect on 0.75-0.95 IoU threshold range.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AlexeyAB: darknet. https://github.com/AlexeyAB/darknet. Accessed 20 Dec 2021
Alonso, M., Izaguirre, A., Graña, M.: Current research trends in robot grasping and bin picking. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC, vol. 771, pp. 367–376. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_35
Arents, J., Cacurs, R., Greitans, M.: Integration of computervision and artificial intelligence subsystems with robot operating system based motion planning for industrial robots. Autom. Control Comput. Sci. 52(5), 392–401 (2018)
Arents, J., Greitans, M.: Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci. 12(2), 937 (2022). https://doi.org/10.3390/app12020937
Arents, J., Greitans, M., Lesser, B.: Artificial Intelligence for Digitising Industry, Applications, chap. Construction of a Smart Vision-Guided Robot System for Manipulation in a Dynamic Environment, pp. 205–220. https://www.riverpublishers.com/book_details.php?book_id=967, https://doi.org/10.13052/rp-9788770226639 (2021)
Buchholz, D.: Bin-Picking - New Approaches for a Classical Problem. Ph.D. thesis, \(\tilde{(}{\rm Jul}\,2015)\), https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00060699
Buls, E., Kadikis, R., Cacurs, R., \(\bar{{\rm A}}\)rents, J.: Generation of synthetic training data for object detection in piles. In: Eleventh International Conference on Machine Vision (ICMV 2018). vol. 11041, pp. 533–540. International Society for Optics and Photonics, SPIE (2019). https://doi.org/10.1117/12.2523203, https://doi.org/10.1117/12.2523203
Chu, F.J., Xu, R., Vela, P.A.: Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 3(4), 3355–3362 (2018)
Das, A., Kandan, S., Yogamani, S., Krizek, P.: Design of real-time semantic segmentation decoder for automated driving (2019)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2011)
Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1310–1319 (2017). https://doi.org/10.1109/ICCV.2017.146
Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)
He, R., Rojas, J., Guan, Y.: A 3D object detection and pose estimation pipeline using RGB-D images. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1527–1532. IEEE (2017)
Kleeberger, K., Landgraf, C., Huber, M.F.: Large-scale 6D object pose estimation dataset for industrial bin-picking (2019)
Luenendonk, M.: Industry 4.0: definition, design principles, challenges, and the future of employment (2019). Accessed 24 2020
Mousavian, A., Eppner, C., Fox, D.: 6-dof graspnet: variational grasp generation for object manipulation (2019)
Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242 (2020). https://doi.org/10.1109/IWSSIP48289.2020.9145130
Pérez, L., Rodríguez, Í., Rodríguez, N., Usamentiaga, R., García, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3), 335 (2016)
Qiu, W., Yuille, A.: UnrealCV: connecting computer vision to unreal engine. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 909–916. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_75
Redmon, J.: Darknet: open source neural networks in c. http://pjreddie.com/darknet/ (2013–2016)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (06 2015). https://doi.org/10.1109/TPAMI.2016.2577031
Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. In: CoRL (2018)
Wang, K., Shi, F., Wang, W., Nan, Y., Lian, S.: Synthetic data generation and adaption for object detection in smart vending machines. CoRR abs/1904.12294 http://arxiv.org/abs/1904.12294 (2019)
Xu, Z., Li, B., Yuan, Y., Dang, A.: Beta R-CNN: Looking into pedestrian detection from another perspective. In: NeurIPS (2020)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11
YunYang1994: tensorflow-yolov3. https://github.com/YunYang1994/tensorflow-yolov3 Accessed Dec 20 2021
Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. In: Digital Signal Processing, p. 103514 (2022)
Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and classification in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2110–2118 (2016)
Zoghlami, F., Kurrek, P., Jocas, M., Masala, G., Salehi, V.: Design of a deep post gripping perception framework for industrial robots. J. Comput. Inf. Sci. Eng. 21, 1–14 (2020). https://doi.org/10.1115/1.4048204
Acknowledgements
The work has been performed in the project AI4DI: Artificial Intelligence for Digitizing Industry, under grant agreement No 826060. The project is co-funded by grants from Germany, Austria, Finland, France, Norway, Latvia, Belgium, Italy, Switzerland, and Czech Republic and - Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU). In Austria the project was also funded by the program “IKT der Zukunft” of the Austrian Federal Ministry for Climate Action (BMK). Parts of the publication was written at Virtual Vehicle Research GmbH in Graz and partially funded within the COMET K2 Competence Centers for Excellent Technologies from the Austrian Federal Ministry for Climate Action (BMK), the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), the Province of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion Agency (FFG) has been authorised for the programme management.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arents, J., Lesser, B., Bizuns, A., Kadikis, R., Buls, E., Greitans, M. (2022). Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_59
Download citation
DOI: https://doi.org/10.1007/978-3-031-06430-2_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06429-6
Online ISBN: 978-3-031-06430-2
eBook Packages: Computer ScienceComputer Science (R0)