Abstract
Myocarditis is a cardiovascular disease caused by infectious agents, especially viruses. Compared to other cardiovascular diseases, myocarditis is very rare, occurring mainly due to chest pain or heart failure. Cardiac magnetic resonance (CMR) imaging is a popular technique for diagnosis of myocarditis. Factors such as low contrast, different noises, and high CMR slices of each patient cause many challenges when diagnosing myocarditis by specialist physicians. Therefore, it is necessary to introduce new artificial intelligence (AI) techniques for diagnosis of myocarditis from CMR images. This paper presents a new method to detect myocarditis in CMR images using deep learning (DL) models. First, the Z-Alizadeh Sani myocarditis dataset was used for simulations, which included CMR images of normal subjects and myocardial infarction patients. Next, preprocessing is performed on CMR images. CMR images are created with the help of the cycle generative adversarial network (GAN) model at this step. Finally, pretrained models including EfficientNet B3, EfficientNet V2, HrNet, ResNetrs50, ResNest50d, and ResNet 50d have been used to classify the input data. Among pretrained methods, the EfficientNet V2 model has achieved 99.33% accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alizadehsani, R., et al.: Coronary artery disease detection using artificial intelligence techniques: a survey of trends, geographical differences and diagnostic features 1991–2020. Comput. Biol. Med. 128, 104095 (2021)
Bello, I., et al.: Revisiting resnets: improved training and scaling strategies. Adv. Neural Inf. Process. Syst. 34 (2021)
Blauwet, L.A., Cooper, L.T.: Myocarditis. Progress Cardiovascular Dis. 52(4), 274–288 (2010)
Borggreve, A.S., Goense, L., van Rossum, P.S., van Hillegersberg, R., de Jong, P.A., Ruurda, J.P.: Generalized cardiovascular disease on a preoperative CT scan is predictive for anastomotic leakage after esophagectomy. Eur. J. Surg. Oncol. 44(5), 587–593 (2018)
Chen, A., et al.: Transfer learning for the fully automatic segmentation of left ventricle myocardium in porcine cardiac cine MR images. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 21–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_3
Chen, M., Fang, L., Zhuang, Q., Liu, H.: Deep learning assessment of myocardial infarction from MR image sequences. IEEE Access 7, 5438–5446 (2019)
Chen, Z., et al.: Myocardial infarction segmentation from late gadolinium enhancement MRI by neural networks and prior information. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
Cosselman, K.E., Navas-Acien, A., Kaufman, J.D.: Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12(11), 627–642 (2015)
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)
Dillon, J.V., et al.: Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017)
Fahmy, A.S., El-Rewaidy, H., Nezafat, M., Nakamori, S., Nezafat, R.: Automated analysis of cardiovascular magnetic resonance myocardial native t1 mapping images using fully convolutional neural networks. J. Cardiovascular Magn. Reson. 21(1), 1–12 (2019)
Gaziano, T., Reddy, K.S., Paccaud, F., Horton, S., Chaturvedi, V.: Cardiovascular disease. Disease Control Priorities in Developing Countries. 2nd edition (2006)
Ghassemi, N., et al.: Automatic diagnosis of covid-19 from CT images using cyclegan and transfer learning. arXiv preprint arXiv:2104.11949 (2021)
Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Proceedings of the IEEE conference on computer vision and pattern recognition (2016)
Huang, Z., et al.: Cagan: a cycle-consistent generative adversarial network with attention for low-dose CT imaging. IEEE Trans. Comput. Imaging 6, 1203–1218 (2020)
Imes, C.C., Lewis, F.M.: Family history of cardiovascular disease (CVD), perceived CVD risk, and health-related behavior: a review of the literature. J. Cardiovascular Nursing 29(2), 108 (2014)
Jeelani, H., Yang, Y., Zhou, R., Kramer, C.M., Salerno, M., Weller, D.S.: A myocardial t1-mapping framework with recurrent and u-net convolutional neural networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1941–1944. IEEE (2020)
Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 95–109. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_7
Khodatars, M., et al.: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Comput. Biol. Med. 139, 104949 (2021)
Liu, X., Wang, H., Li, Z., Qin, L.: Deep learning in ECG diagnosis: a review. Knowl.-Based Syst. 227, 107187 (2021)
Ma, J.: Cascaded framework for automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. arXiv preprint arXiv:2012.14556 (2020)
Mohammadpoor, M., Shoeibi, A., Shojaee, H., et al.: A hierarchical classification method for breast tumor detection. Iranian J. Med. Phys. 13(4), 261–268 (2016)
Mouquet, F., et al.: Characterisation of peripartum cardiomyopathy by cardiac magnetic resonance imaging. Eur. Radiol. 18(12), 2765–2769 (2008)
Ogden, J.A.: Congenital anomalies of the coronary arteries. Am. J. Cardiol. 25(4), 474–479 (1970)
Ohta, Y., Yunaga, H., Kitao, S., Fukuda, T., Ogawa, T.: Detection and classification of myocardial delayed enhancement patterns on MR images with deep neural networks: a feasibility study. Radiol. Artif. Intell. 1(3), e180061 (2019)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Sadeghi, D., et al.: An overview on artificial intelligence techniques for diagnosis of schizophrenia based on magnetic resonance imaging modalities: methods, challenges, and future works. arXiv preprint arXiv:2103.03081 (2021)
Scannell, C.M., Veta, M., Villa, A.D., Sammut, E.C., Lee, J., Breeuwer, M., Chiribiri, A.: Deep-learning-based preprocessing for quantitative myocardial perfusion MRI. J. Magn. Reson. Imaging 51(6), 1689–1696 (2020)
Sharifrazi, D., et al.: CNN-KCL: automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering (2020)
Shoeibi, A., et al.: Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomed. Signal Process. Control 73, 103417 (2022)
Shoeibi, A., et al.: Automated detection and forecasting of covid-19 using deep learning techniques: a review. arXiv preprint arXiv:2007.10785 (2020)
Suri, J.S., et al.: Understanding the bias in machine learning systems for cardiovascular disease risk assessment: the first of its kind review. Comput. Biol. Med. 105204 (2022)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)
Villanueva, F.S., Wagner, W.R.: Ultrasound molecular imaging of cardiovascular disease. Nat. Clin. Pract. Cardiovascular Med. 5(2), S26–S32 (2008)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Patt. Anal. Mach. Intell. 43(10), 3349–3364 (2020)
Wang, S.H., McCann, G., Tyukin, I.: Myocardial infarction detection and quantification based on a convolution neural network with online error correction capabilities. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
Wolfe, F., Michaud, K.: Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti-tumor necrosis factor therapy. Am. J. Med. 116(5), 305–311 (2004)
Zhang, H., et al.: Resnest: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)
Zhang, Y.: Cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI. In: Puyol Anton, E., Pop, M., Sermesant, M., Campello, V., Lalande, A., Lekadir, K., Suinesiaputra, A., Camara, O., Young, A. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 328–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_33
Zhou, H., et al.: Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur. Radiol. 31(6), 3931–3940 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Shoeibi, A., Ghassemi, N., Heras, J., Rezaei, M., Gorriz, J.M. (2022). Automatic Diagnosis of Myocarditis in Cardiac Magnetic Images Using CycleGAN and Deep PreTrained Models. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-06242-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06241-4
Online ISBN: 978-3-031-06242-1
eBook Packages: Computer ScienceComputer Science (R0)