Automatic Diagnosis of Myocarditis in Cardiac Magnetic Images Using CycleGAN and Deep PreTrained Models | SpringerLink
Skip to main content

Automatic Diagnosis of Myocarditis in Cardiac Magnetic Images Using CycleGAN and Deep PreTrained Models

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

Myocarditis is a cardiovascular disease caused by infectious agents, especially viruses. Compared to other cardiovascular diseases, myocarditis is very rare, occurring mainly due to chest pain or heart failure. Cardiac magnetic resonance (CMR) imaging is a popular technique for diagnosis of myocarditis. Factors such as low contrast, different noises, and high CMR slices of each patient cause many challenges when diagnosing myocarditis by specialist physicians. Therefore, it is necessary to introduce new artificial intelligence (AI) techniques for diagnosis of myocarditis from CMR images. This paper presents a new method to detect myocarditis in CMR images using deep learning (DL) models. First, the Z-Alizadeh Sani myocarditis dataset was used for simulations, which included CMR images of normal subjects and myocardial infarction patients. Next, preprocessing is performed on CMR images. CMR images are created with the help of the cycle generative adversarial network (GAN) model at this step. Finally, pretrained models including EfficientNet B3, EfficientNet V2, HrNet, ResNetrs50, ResNest50d, and ResNet 50d have been used to classify the input data. Among pretrained methods, the EfficientNet V2 model has achieved 99.33% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alizadehsani, R., et al.: Coronary artery disease detection using artificial intelligence techniques: a survey of trends, geographical differences and diagnostic features 1991–2020. Comput. Biol. Med. 128, 104095 (2021)

    Google Scholar 

  2. Bello, I., et al.: Revisiting resnets: improved training and scaling strategies. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  3. Blauwet, L.A., Cooper, L.T.: Myocarditis. Progress Cardiovascular Dis. 52(4), 274–288 (2010)

    Google Scholar 

  4. Borggreve, A.S., Goense, L., van Rossum, P.S., van Hillegersberg, R., de Jong, P.A., Ruurda, J.P.: Generalized cardiovascular disease on a preoperative CT scan is predictive for anastomotic leakage after esophagectomy. Eur. J. Surg. Oncol. 44(5), 587–593 (2018)

    Google Scholar 

  5. Chen, A., et al.: Transfer learning for the fully automatic segmentation of left ventricle myocardium in porcine cardiac cine MR images. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 21–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_3

  6. Chen, M., Fang, L., Zhuang, Q., Liu, H.: Deep learning assessment of myocardial infarction from MR image sequences. IEEE Access 7, 5438–5446 (2019)

    Google Scholar 

  7. Chen, Z., et al.: Myocardial infarction segmentation from late gadolinium enhancement MRI by neural networks and prior information. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  8. Cosselman, K.E., Navas-Acien, A., Kaufman, J.D.: Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12(11), 627–642 (2015)

    Google Scholar 

  9. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Google Scholar 

  10. Dillon, J.V., et al.: Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017)

  11. Fahmy, A.S., El-Rewaidy, H., Nezafat, M., Nakamori, S., Nezafat, R.: Automated analysis of cardiovascular magnetic resonance myocardial native t1 mapping images using fully convolutional neural networks. J. Cardiovascular Magn. Reson. 21(1), 1–12 (2019)

    Google Scholar 

  12. Gaziano, T., Reddy, K.S., Paccaud, F., Horton, S., Chaturvedi, V.: Cardiovascular disease. Disease Control Priorities in Developing Countries. 2nd edition (2006)

    Google Scholar 

  13. Ghassemi, N., et al.: Automatic diagnosis of covid-19 from CT images using cyclegan and transfer learning. arXiv preprint arXiv:2104.11949 (2021)

  14. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Proceedings of the IEEE conference on computer vision and pattern recognition (2016)

    Google Scholar 

  16. Huang, Z., et al.: Cagan: a cycle-consistent generative adversarial network with attention for low-dose CT imaging. IEEE Trans. Comput. Imaging 6, 1203–1218 (2020)

    Google Scholar 

  17. Imes, C.C., Lewis, F.M.: Family history of cardiovascular disease (CVD), perceived CVD risk, and health-related behavior: a review of the literature. J. Cardiovascular Nursing 29(2), 108 (2014)

    Google Scholar 

  18. Jeelani, H., Yang, Y., Zhou, R., Kramer, C.M., Salerno, M., Weller, D.S.: A myocardial t1-mapping framework with recurrent and u-net convolutional neural networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1941–1944. IEEE (2020)

    Google Scholar 

  19. Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 95–109. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_7

  20. Khodatars, M., et al.: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Comput. Biol. Med. 139, 104949 (2021)

    Google Scholar 

  21. Liu, X., Wang, H., Li, Z., Qin, L.: Deep learning in ECG diagnosis: a review. Knowl.-Based Syst. 227, 107187 (2021)

    Google Scholar 

  22. Ma, J.: Cascaded framework for automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. arXiv preprint arXiv:2012.14556 (2020)

  23. Mohammadpoor, M., Shoeibi, A., Shojaee, H., et al.: A hierarchical classification method for breast tumor detection. Iranian J. Med. Phys. 13(4), 261–268 (2016)

    Google Scholar 

  24. Mouquet, F., et al.: Characterisation of peripartum cardiomyopathy by cardiac magnetic resonance imaging. Eur. Radiol. 18(12), 2765–2769 (2008)

    Google Scholar 

  25. Ogden, J.A.: Congenital anomalies of the coronary arteries. Am. J. Cardiol. 25(4), 474–479 (1970)

    Google Scholar 

  26. Ohta, Y., Yunaga, H., Kitao, S., Fukuda, T., Ogawa, T.: Detection and classification of myocardial delayed enhancement patterns on MR images with deep neural networks: a feasibility study. Radiol. Artif. Intell. 1(3), e180061 (2019)

    Google Scholar 

  27. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  28. Sadeghi, D., et al.: An overview on artificial intelligence techniques for diagnosis of schizophrenia based on magnetic resonance imaging modalities: methods, challenges, and future works. arXiv preprint arXiv:2103.03081 (2021)

  29. Scannell, C.M., Veta, M., Villa, A.D., Sammut, E.C., Lee, J., Breeuwer, M., Chiribiri, A.: Deep-learning-based preprocessing for quantitative myocardial perfusion MRI. J. Magn. Reson. Imaging 51(6), 1689–1696 (2020)

    Google Scholar 

  30. Sharifrazi, D., et al.: CNN-KCL: automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering (2020)

    Google Scholar 

  31. Shoeibi, A., et al.: Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomed. Signal Process. Control 73, 103417 (2022)

    Google Scholar 

  32. Shoeibi, A., et al.: Automated detection and forecasting of covid-19 using deep learning techniques: a review. arXiv preprint arXiv:2007.10785 (2020)

  33. Suri, J.S., et al.: Understanding the bias in machine learning systems for cardiovascular disease risk assessment: the first of its kind review. Comput. Biol. Med. 105204 (2022)

    Google Scholar 

  34. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  35. Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

  36. Villanueva, F.S., Wagner, W.R.: Ultrasound molecular imaging of cardiovascular disease. Nat. Clin. Pract. Cardiovascular Med. 5(2), S26–S32 (2008)

    Google Scholar 

  37. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Patt. Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Google Scholar 

  38. Wang, S.H., McCann, G., Tyukin, I.: Myocardial infarction detection and quantification based on a convolution neural network with online error correction capabilities. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  39. Wolfe, F., Michaud, K.: Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti-tumor necrosis factor therapy. Am. J. Med. 116(5), 305–311 (2004)

    Google Scholar 

  40. Zhang, H., et al.: Resnest: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

  41. Zhang, Y.: Cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI. In: Puyol Anton, E., Pop, M., Sermesant, M., Campello, V., Lalande, A., Lekadir, K., Suinesiaputra, A., Camara, O., Young, A. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 328–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_33

  42. Zhou, H., et al.: Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur. Radiol. 31(6), 3931–3940 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shoeibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shoeibi, A., Ghassemi, N., Heras, J., Rezaei, M., Gorriz, J.M. (2022). Automatic Diagnosis of Myocarditis in Cardiac Magnetic Images Using CycleGAN and Deep PreTrained Models. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics