Smart Fitting Rooms: Acceptance of Smart Retail Technologies in Omni-Channel Physical Stores | SpringerLink
Skip to main content

Smart Fitting Rooms: Acceptance of Smart Retail Technologies in Omni-Channel Physical Stores

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13327))

Included in the following conference series:

  • 2068 Accesses

Abstract

In response to increasing growth rates in online retail and changing consumer behavior, many retailers are pursuing an omni-channel strategy. Smart retail technologies, such as smart fitting rooms, help to integrate online and offline channels and to create a strong, holistic customer experience.

This research investigates the drivers and barriers regarding the use of smart fitting rooms in German fashion retailing by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) by the variables ‘need for interaction’ and ‘willingness to provide personal information’. ‘Age’, ‘gender’ and ‘experience’ were examined as moderator variables. Data was collected using a quantitative online survey and analyzed by means of regression analysis.

The most significant and substantial factors influencing consumers’ intention to use smart fitting rooms proved to be ‘hedonic motivation’, ‘performance expectancy’ and ‘willingness to provide personal information’. The variables ‘effort expectancy’ and ‘facilitating conditions’ have a weak significant influence on the use intention. ‘Social influence’ and ‘need for interaction’ did not prove to be influential in this study.

The examination of moderator effects showed that ‘age’ only moderated the influence of ‘willingness to provide personal information’ while there were gender differences for ‘performance expectancy’ and ‘hedonic motivation’. The results also show that, especially the predictor ‘facilitating conditions’ has a much larger effect for inexperienced users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balaji, M.S., Roy, S.K., Nguyen, B.: Consumer-computer interaction and in-store smart technology (IST) in the retail industry: the role of motivation, opportunity, and ability. J. Mark. Manag. 36, 299–333 (2020)

    Google Scholar 

  2. Blut, M., Wang, C., Schoefer, K.: Factors influencing the acceptance of self-service technologies: a meta-analysis. J. Serv. Res. 19, 396–416 (2016)

    Google Scholar 

  3. von Briel, F.: The future of omnichannel retail: a four-stage Delphi study. Technol. Forecast. Soc. Change 132, 217–229 (2018)

    Article  Google Scholar 

  4. Cazier, J.A., Jensen, A.S., Dave, D.S.: The impact of consumer perceptions of information privacy and security risks on the adoption of residual RFID technologies. Commun. Assoc. Inf. Syst. 23(14), 235–256 (2008)

    Google Scholar 

  5. Cohen, J.: A power primer. Psychol. Bull. 112, 155–159 (1992)

    Article  Google Scholar 

  6. Dabholkar, P.A.: Consumer evaluations of new technology-based self-service options: an investigation of alternative models of service quality. Int. J. Res. Mark. 13, 28–51 (1996)

    Article  Google Scholar 

  7. Demoulin, N., Djelassi, S.: An integrated model of self-service technology (SST) usage in a retail context. Int. J. Retail Distrib. Manag. 44(5), 540–599 (2016)

    Google Scholar 

  8. Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transactions. Inf. Syst. Res. 17(1), 61–80 (2006)

    Google Scholar 

  9. Eyuboglu, K., Sevim, U.: Determinants of consumers adoption to shopping with QR-Code in Turkey. J. Int. Soc. Res. 9(43), 1830–1839 (2016)

    Google Scholar 

  10. Hauser, M., Bardaki, C.: IoT-enabled customer experience in retail fashion stores: opportunities & challenges. In: 8th International Conference on Interoperability for Enterprise Systems and Applications (2016)

    Google Scholar 

  11. Handelsverband Deutschland – HDE e.V. (ed.): Online-Monitor 2021, Köln, 12 (2021)

    Google Scholar 

  12. Heinemann, G.: Die Neuerfindung des stationären Einzelhandels. Kundenzentralität und ultimative Usability für Stadt und Handel der Zukunft. Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-15862-0

  13. Huang, T.-L., Liao, S.: A model of acceptance of augmented-reality interactive technology: the moderating role of cognitive innovativeness. Electron. Commer. Res. 15(2), 269–295 (2015)

    Google Scholar 

  14. Huré, E., Picot-Coupey, K., Ackermann, C.L.: Understanding omni-channel shopping value: a mixed-method study. J. Retail. Consum. Serv. 39, 314–330 (2017)

    Google Scholar 

  15. Janssen, J., Laatz, W.: Statistische Datenanalyse mit SPSS. 9, überarbeitete und erweiterte Ausgabe. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53477-9

  16. Kallweit, K., Spreer, P., Toporowski, W.: Why do customers use self-service information technologies in retail? The mediating effect of perceived service quality. J. Retail. Consum. Serv. 21, 268–276 (2014)

    Article  Google Scholar 

  17. Kim, J., Forsythe, S.: Adoption of virtual try-on technology for online apparel shopping. J. Interact. Mark. 22(2), 45–59 (2008)

    Google Scholar 

  18. Lee, H.-H., Fiore, A.M., Kim, J.: The role of the technology acceptance model in explaining effects of image interactivity technology on consumer responses. Int. J. Retail Distrib. Manag. 34(8), 621–644 (2006)

    Google Scholar 

  19. Maisch, B., Palacios Valdés, C.A.: Kundenzentrierte digitale Geschäftsmodelle. In: Fend, L., Hofmann, J. (eds.) Digitalisierung in Industrie-, Handels- und Dienstleistungsunternehmen, pp. 29–51. Springer, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-21905-5_2

    Chapter  Google Scholar 

  20. Mani, Z., Chouk, I.: Drivers of consumers’ resistance to smart products. J. Mark. Manag. 33, 1–21 (2017)

    Google Scholar 

  21. Metter, A.: Mit virtual promoter zum point of experience. In: Knoppe, M., Wild, M. (eds.) Digitalisierung im Handel, pp. 59–78. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-55257-5_4

    Chapter  Google Scholar 

  22. Meuter, M.L., Bitner, M.J., Ostrom, A.L., Brown, S.: Choosing among alternative service delivery modes: an investigation of customer trial of self-service technologies. J. Mark. 69(2), 61–83 (2005)

    Google Scholar 

  23. Mukherjee, A., Smith, R.J., Turri, A.M.: The smartness paradox: the moderating effect of brand quality reputation on consumers’ reactions to RFID-based smart fitting rooms. J. Bus. Res. 92, 290–299 (2018)

    Article  Google Scholar 

  24. Müller-Seitz, G., Dautzenberg, K., Creusen, U., Stromereder, C.: Customer acceptance of RFID technology: evidence from the German electronic retail sector. J. Retail. Consum. Behav. 16, 31–39 (2009)

    Article  Google Scholar 

  25. Nistor, N., Wagner, M., Heymann, J.O.: Prädiktoren und Moderatoren der Akzeptanz von Bildungstechnologien. Die unified theory of acceptance and use of technology auf dem Prüfstand. Empirische Pädagogik 26(3), 343–371 (2012)

    Google Scholar 

  26. Nysveen, H., Pedersen, P.E.: Consumer adoption of RFID-enabled services. Applying an extended UTAUT model. Inf. Syst. Front. 18, 293–314 (2014)

    Google Scholar 

  27. Pantano, E., Rese, A., Baier, D.: Enhancing the online decision-making process by using augmented reality: a two country comparison of youth markets. J. Retail. Consum. Serv. 38, 81–95 (2017)

    Article  Google Scholar 

  28. Pantano, E., Timmermans, H.: What is smart for retailing? Procedia Environ. Sci. 22, 101–107 (2014)

    Google Scholar 

  29. Pratibha, R.: Does consumer’s motivation differ across gender? A study in shopping malls. Int. J. Manag. Stud. 2(5), 23–28 (2018)

    Google Scholar 

  30. Rese, A., Baier, D., Geyer-Schulz, A., Schreiber, S.: How augmented reality apps are accepted by consumers: a comparative analysis using scales and opinions. Technol. Forecast. Soc. Change 124, 306–319 (2017)

    Google Scholar 

  31. Rese, A., Schlee, T., Baier, D.: The need for services and technologies in physical fast fashion stores: generation Y’s opinion. J. Mark. Manag. 35, 1–23 (2019)

    Google Scholar 

  32. Roy, S.K., Balaji, M.S., Quazi, A., Quaddus, M.: Predictors of customer acceptance of and resistance to smart technologies in the retail sector. J. Retail. Consum. Serv. 42, 147–160 (2018)

    Google Scholar 

  33. Schwarz, J.: Einfache und multiple Regressionsanalyse/Logistische Regressions- analyse. Skript im Modul Statistik im Masterstudiengang Pflege an der Berner Fachhochschule an der FHS St. Gallen (2012). https://www.yumpu.com/de/document/read/29990249/lehreinheit-5-regressionpdf-schwarz-partners-gmbh. Accessed 14 Jan 2021

  34. Spreer, P., Kallweit, K.: Augmented reality in retail: assessing the acceptance and potential for multimedia product presentation at the PoS. Trans. Mark. Res. 1(1), 20–35 (2014)

    Google Scholar 

  35. Srinivasan, R.: An investigation of Indian consumers’ adoption of retail self-service technologies (SSTs): application of the cultural-self perspective and Technology Acceptance Model (TAM). Graduate Theses and Dissertations. Iowa State University (2014)

    Google Scholar 

  36. Szameitat, C., Blank, D.: Verbraucher nutzen digitale Tools am POS (2016). https://www.stores-shops.de/technology/verbraucher-nutzen-digitale-tools-am-pos/. Accessed 6 Sept 2020

  37. Taiwo, A.A., Downe, A.G.: The theory of user acceptance and use of technology (UTAUT): a meta-analytic review of empirical findings. J. Theor. Appl. Inf. Technol. 49(1), 48–58 (2013)

    Google Scholar 

  38. Tyrväinen, O., Karjaluoto, H., Saarijärvi, H.: Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. J. Retail. Consum. Serv. 57, 102233 (2020)

    Google Scholar 

  39. Urban, D., Mayerl, J.: Angewandte Regressionsanalyse: Theorie, Technik und Praxis. Studienskripten zur Soziologie. Springer, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-01915-0

  40. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q., 27(3), 425–478 (2003)

    Google Scholar 

  41. Venkatesh, V., Thong, J.Y.L., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012)

    Google Scholar 

  42. Wang, C.: Consumer acceptance of self-service technologies: an ability–willingness model. In: Int. J. Mark. Res. 59(6), 787–802 (2017)

    Google Scholar 

  43. Weinhard, A., Hauser, M., Thiesse, F.: Explaining adoption of pervasive retail systems with a model based on UTAUT2 and the extended privacy calculus. In: Twenty First Pacific Asia Conference on Information Systems (2017)

    Google Scholar 

  44. Wünderlich, N., et al.: “Futurizing” smart service: implications for service researchers and managers. J. Serv. Res. 29, 442–447 (2015)

    Google Scholar 

  45. Wünderlich, N., Wangenheim, F.V., Bitner, M.J.: High tech and high touch: a framework for understanding user attitudes and behaviors related to smart interactive services. J. Serv. Res. 16, 3–20 (2013)

    Google Scholar 

  46. Zielke, S., Toporowski, W., Kniza, B.: Customer acceptance of a new interactive information terminal in grocery retailing: antecedents and moderators. IGI Global (2011)

    Google Scholar 

  47. Zimmermann, V.: Der Konsument in der digital-kollaborativen Wirtschaft. Eine empirische Untersuchung der Anbieterseite auf C2C-Plattformen. Best Masters. Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-16652-6

  48. Zinnbauer, M., Eberl, M.: Die Überprüfung von Spezifikation und Güte von Strukturgleichungsmodellen – Verfahren und Anwendung. In: Schriften zur Empirischen Forschung und Quantitativen Unternehmensplanung (EFOplan), 21 (2004). https://www.en.imm.bwl.uni-muenchen.de/04_research/schriftenefo/ap_efoplan_21.pdf. Accessed 8 Dec 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Zaharia .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Operationalization of the Constructs

Behavioral intention

Source

BI_1

If I had the chance in the future, I would use SFR

Nysveen/Pedersen (2014)

BI_2

I cannot imagine using SFR in the future

Venkatesh et al. (2012)

Weinhard et al. (2017)

BI_3

If you had the chance, how likely would it be that you would use SFR?

Nysveen/Pedersen (2014)

Performance expectancy

 

PE_1

I would find SFR useful for trying on clothing

Venkatesh et al. (2012)

PE_2

Using SFR would help me to try clothing on quicker

Venkatesh et al. (2012)

PE_3

Using SFR would help me make easier and more targeted decisions on articles of clothing

Venkatesh et al. (2012)

Weinhard et al. (2017)

PE_4

The use of SFR would improve the experience of trying on clothes for me (e.g. through personalized product suggestions)

Nysveen/Pedersen (2014)

Effort expectancy

 

EE_1

I would find it easy to use SFR

Venkatesh et al. (2012)

Weinhard et al. (2017)

EE_2

I think using SFR is easy and straightforward

Venkatesh et al. (2012)

Weinhard et al. (2017)

EE_3

I imagine the use of SFR is complicated

Venkatesh et al. (2012)

EE_4

I think that I could operate SFR without issue

Venkatesh et al. (2012)

Social influence

 

SI_1

Whether I use SFR in the future will be influenced by…

… friends‘ or family members‘ recommendations

Venkatesh et al. (2012)

Nysveen/Pedersen (2014)

SI_2

... friends‘ or family members‘ previous positive experiences

Venkatesh et al. (2012)

Nysveen/Pedersen (2014)

SI_3

... whether friends or family members have used SFR in the past

Venkatesh et al. (2012)

Nysveen/Pedersen (2014)

Facilitating conditions

 

FC_1

With the help of a tutorial (“directions“) that explains the functions for operating SFR, I think I would be capable of using one

Venkatesh et al. (2012)

FC_2

I think that my technical know-how is sufficient for using SFR

Venkatesh et al. (2012)

FC_3

With assistance from sales associates, I think I would be capable of using SFR

Venkatesh et al. (2012)

FC_4

I know how to find out more about operating SFR

Venkatesh et al. (2012)

Hedonic motivation

 

HM_1

I imagine using SFR is entertaining

Venkatesh et al. (2012)

HM_2

I think it would be fun to use SFR

Venkatesh et al. (2012)

HM_3

I think it would be boring to use SFR

Venkatesh et al. (2012)

HM_4

It would be an interesting experience to use SFR

Tyrväinen et al. (2020)

Need for Interaction

 

NFI_1

I like to receive personal recommendations when trying on clothes

Demoulin/Djelassi (2015)

NFI_2

Interacting with sales associates makes trying on clothes more fun for me

Demoulin/Djelassi (2015)

NFI_3

Receiving personal recommendations from sales associates when trying on clothes is not important to me

Demoulin/Djelassi (2015)

NFI_4

It bothers me when I do not get personal recommendations from sales associates when trying on clothes

Demoulin/Djelassi (2015)

Willingness to provide personal information

 

WTPPI_1

I would provide my personal information (address and financial data) in order to place an online order through SFR

Dinev/Hart (2006)

WTPPI_2

I would register my customer account to use the SFR

Weinhard et al. (2017)

WTPPI_3

In order to take advantage of all the features of SFR, I would provide my personal information (e.g. customer ID, address & financial data)

Weinhard et al. (2017)

WTPPI_4

I would provide my personal information in order to access personalized content (e.g. personalized product recommendations)

Weinhard et al. (2017)

Appendix 2: Results of Hypotheses Tests for the Moderating Effects of Age, Gender and Experience

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brümmer, L., Zaharia, S. (2022). Smart Fitting Rooms: Acceptance of Smart Retail Technologies in Omni-Channel Physical Stores. In: Fui-Hoon Nah, F., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2022. Lecture Notes in Computer Science, vol 13327. Springer, Cham. https://doi.org/10.1007/978-3-031-05544-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05544-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05543-0

  • Online ISBN: 978-3-031-05544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics