High-Resolution Remote Sensing Image Semantic Segmentation Method Based on Improved Encoder-Decoder Convolutional Neural Network | SpringerLink
Skip to main content

High-Resolution Remote Sensing Image Semantic Segmentation Method Based on Improved Encoder-Decoder Convolutional Neural Network

  • Conference paper
  • First Online:
Intelligent Information Processing XI (IIP 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 643))

Included in the following conference series:

  • 823 Accesses

Abstract

In recent years, Convolutional neural network with encoder-decoder structure is a kind of image semantic segmentation method with high accuracy. However, the characteristics of large amount of parameters and high requirements for computing power restrict its application in the fields of limited computing power and high real-time requirement, such as unmanned driving, road monitoring, remote sensing classification and mobile object detection. To solve the above problems, this thesis firstly designs the dilated convolution combination module, which solves the gridding problems while ensuring large receptive field; then, a double-channel encoder-decoder convolutional neural network is built by using the dilated convolution module combined with the depth separable convolution. Using this network, the parameters and computation of semantic segmentation convolution model of high resolution remote sensing image are greatly reduced while maintaining high segmentation accuracy. Through experiments on GID data sets, and compared with a variety of semantic segmentation methods, this thesis verifies the effectiveness and light-weight of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Madan, S., Pranjali, C.: A review of machine learning techniques using decision tree and support vector machine. In: International Conference on Computing Communication Control & Automation, Piscataway, Pune, India, pp. 1–7. IEEE (2017)

    Google Scholar 

  2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)

    Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Nanjun, H., Leyuan, F., Plaza, A.: Hybrid first and second order attention U-Net for building segmentation in remote sensing images. Inf. Sci. 63(140305), 69–80 (2020)

    Google Scholar 

  6. Liang, C., George, P., Iasonas, K., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  7. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

    Chapter  Google Scholar 

  8. Huihui, H., Weitao, L., Jianping, W., et al.: Semantic segmentation of encoder-decoder structure. J. Image Graph. 25(02), 255–266 (2020)

    Google Scholar 

  9. Norman, B., Pedoia, V., Majumdar, S.: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288(1), 1109–1122 (2018)

    Article  Google Scholar 

  10. Wang, Y., Sun, S., Yu, J., et al.: Skin lesion segmentation using atrous convolution via DeepLab v3. arXiv, vol. 1, pp. 1–4 (2018)

    Google Scholar 

  11. Nekrasov, V., Shen, C., Reid, I.: Light-weight refine-net for real-time semantic segmentation. In: BMVC, Newcastle upon Tyne, England, pp. 1–15 (2018)

    Google Scholar 

  12. Emara, T., Hossam, E., Abd, E.: LiteSeg: a novel lightweight ConvNet for semantic segmentation. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, Australia, pp. 1–7 (2019)

    Google Scholar 

  13. Mehta, S., Rastegari, M., Shapiro, L., et al.: ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network. In: CVPR, CA, USA, pp. 1–10. IEEE (2019)

    Google Scholar 

  14. Xiaoqing, Z., Yongguo, Z., Weike, L., et al.: An improved architecture for urban building extraction based on depthwise separable convolution. J. Intell. Fuzzy Syst. 38(11), 1–9 (2020)

    Google Scholar 

  15. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, pp. 1520–1528. IEEE (2015)

    Google Scholar 

  16. Francois, C.: Xception: deep learning with depthwise separable convolutions. In: CVPR, Honolulu, HI, USA, pp. 1800–1807. IEEE (2017)

    Google Scholar 

  17. Akay, M., Du, Y., Sershen, C.L., et al.: Deep learning classification of systemic sclerosis skin using the MobileNetV2 model. IEEE Open J. Eng. Med. Biol. 99, 104–110 (2021)

    Article  Google Scholar 

  18. Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 6848–6856. IEEE (2018)

    Google Scholar 

  19. Qi, Z., Nauman, R., Shuchang, L., et al.: RSNet: a compact relative squeezing net for image recognition. In: VCIP, NSW, Australia, pp. 1–4. IEEE (2019)

    Google Scholar 

  20. Zhang, X., Zheng, Y., Liu, W., Wang, Z.: A hyperspectral image classification algorithm based on atrous convolution. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–12 (2019)

    Article  Google Scholar 

  21. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 22(4), 357–361 (2014)

    Google Scholar 

  22. Zhang, Y., Chi, M.: Mask-R-FCN: a deep fusion network for semantic segmentation. IEEE Access 8, 155753–155765 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhang, Y., Chen, J., Du, H. (2022). High-Resolution Remote Sensing Image Semantic Segmentation Method Based on Improved Encoder-Decoder Convolutional Neural Network. In: Shi, Z., Zucker, JD., An, B. (eds) Intelligent Information Processing XI. IIP 2022. IFIP Advances in Information and Communication Technology, vol 643. Springer, Cham. https://doi.org/10.1007/978-3-031-03948-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03948-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03947-8

  • Online ISBN: 978-3-031-03948-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics