Abstract
In recent years, Convolutional neural network with encoder-decoder structure is a kind of image semantic segmentation method with high accuracy. However, the characteristics of large amount of parameters and high requirements for computing power restrict its application in the fields of limited computing power and high real-time requirement, such as unmanned driving, road monitoring, remote sensing classification and mobile object detection. To solve the above problems, this thesis firstly designs the dilated convolution combination module, which solves the gridding problems while ensuring large receptive field; then, a double-channel encoder-decoder convolutional neural network is built by using the dilated convolution module combined with the depth separable convolution. Using this network, the parameters and computation of semantic segmentation convolution model of high resolution remote sensing image are greatly reduced while maintaining high segmentation accuracy. Through experiments on GID data sets, and compared with a variety of semantic segmentation methods, this thesis verifies the effectiveness and light-weight of this method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Madan, S., Pranjali, C.: A review of machine learning techniques using decision tree and support vector machine. In: International Conference on Computing Communication Control & Automation, Piscataway, Pune, India, pp. 1–7. IEEE (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Nanjun, H., Leyuan, F., Plaza, A.: Hybrid first and second order attention U-Net for building segmentation in remote sensing images. Inf. Sci. 63(140305), 69–80 (2020)
Liang, C., George, P., Iasonas, K., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34
Huihui, H., Weitao, L., Jianping, W., et al.: Semantic segmentation of encoder-decoder structure. J. Image Graph. 25(02), 255–266 (2020)
Norman, B., Pedoia, V., Majumdar, S.: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288(1), 1109–1122 (2018)
Wang, Y., Sun, S., Yu, J., et al.: Skin lesion segmentation using atrous convolution via DeepLab v3. arXiv, vol. 1, pp. 1–4 (2018)
Nekrasov, V., Shen, C., Reid, I.: Light-weight refine-net for real-time semantic segmentation. In: BMVC, Newcastle upon Tyne, England, pp. 1–15 (2018)
Emara, T., Hossam, E., Abd, E.: LiteSeg: a novel lightweight ConvNet for semantic segmentation. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, Australia, pp. 1–7 (2019)
Mehta, S., Rastegari, M., Shapiro, L., et al.: ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network. In: CVPR, CA, USA, pp. 1–10. IEEE (2019)
Xiaoqing, Z., Yongguo, Z., Weike, L., et al.: An improved architecture for urban building extraction based on depthwise separable convolution. J. Intell. Fuzzy Syst. 38(11), 1–9 (2020)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, pp. 1520–1528. IEEE (2015)
Francois, C.: Xception: deep learning with depthwise separable convolutions. In: CVPR, Honolulu, HI, USA, pp. 1800–1807. IEEE (2017)
Akay, M., Du, Y., Sershen, C.L., et al.: Deep learning classification of systemic sclerosis skin using the MobileNetV2 model. IEEE Open J. Eng. Med. Biol. 99, 104–110 (2021)
Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 6848–6856. IEEE (2018)
Qi, Z., Nauman, R., Shuchang, L., et al.: RSNet: a compact relative squeezing net for image recognition. In: VCIP, NSW, Australia, pp. 1–4. IEEE (2019)
Zhang, X., Zheng, Y., Liu, W., Wang, Z.: A hyperspectral image classification algorithm based on atrous convolution. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–12 (2019)
Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 22(4), 357–361 (2014)
Zhang, Y., Chi, M.: Mask-R-FCN: a deep fusion network for semantic segmentation. IEEE Access 8, 155753–155765 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Zhang, X., Zhang, Y., Chen, J., Du, H. (2022). High-Resolution Remote Sensing Image Semantic Segmentation Method Based on Improved Encoder-Decoder Convolutional Neural Network. In: Shi, Z., Zucker, JD., An, B. (eds) Intelligent Information Processing XI. IIP 2022. IFIP Advances in Information and Communication Technology, vol 643. Springer, Cham. https://doi.org/10.1007/978-3-031-03948-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-03948-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-03947-8
Online ISBN: 978-3-031-03948-5
eBook Packages: Computer ScienceComputer Science (R0)