Negative Selection Algorithm for Alzheimer’s Diagnosis: Design and Performance Evaluation | SpringerLink
Skip to main content

Negative Selection Algorithm for Alzheimer’s Diagnosis: Design and Performance Evaluation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

We present a method for discriminating between healthy subjects and Alzheimer’s diseases patients from on-line handwriting. Departing from the current state of the art methods, that adopts machine learning methods and tools for building the classifier, we propose to apply the Negative Selection Algorithm. The major advantage of the proposed method in comparison with others machine learning techniques is that it requires only data by healthy subjects to build the classifier, thus avoiding to collect patient data, as requested by competing techniques. Experiments results involving data produced by 175 subjects show that the proposed method achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The dataset is publicly available on the following page: http://webuser.unicas.it/fontanella/darwin/.

References

  1. A V, A.S., Lones, M.A., Smith, S.L., Vallejo, M.: Evaluation of recurrent neural network models for parkinson’s disease classification using drawing data. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1702–1706 (2021). https://doi.org/10.1109/EMBC46164.2021.9630106

  2. Agarwal, D., Marques, G., de la Torre-Díez, I., Franco Martin, M.A., García Zapiraín, B., Martín Rodríguez, F.: Transfer learning for alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors 21(21) (2021)

    Google Scholar 

  3. Alissa, M., et al.: Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Comput. Appl. 34(2), 1433–1453 (2022). https://doi.org/10.1007/s00521-021-06469-7

  4. Ba-Karait, N.O., Shamsuddin, S.M., Sudirman, R.: Eeg signals classification using a hybrid method based on negative selection and particle swarm optimization. In: Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 427–438 (2012)

    Google Scholar 

  5. Broderick, M.P., Van Gemmert, A.W., Shill, H.A., Stelmach, G.E.: Hypometria and bradykinesia during drawing movements in individuals with parkinson’s disease. Exp. Brain Res. 197(3), 223–233 (2009)

    Article  Google Scholar 

  6. Cavaliere, F., Della Cioppa, A., Marcelli, A., Parziale, A., Senatore, R.: Parkinson’s disease diagnosis: towards grammar-based explainable artificial intelligence. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6 (2020). https://doi.org/10.1109/ISCC50000.2020.9219616

  7. Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Comput. Sci. 141, 466–471 (2018)

    Article  Google Scholar 

  8. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Handwriting analysis to support Alzheimer’s disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 143–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_13

    Chapter  Google Scholar 

  9. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Using handwriting features to characterize cognitive impairment. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 683–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_62

    Chapter  Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  11. De Gregorio, G., Desiato, D., Marcelli, A., Polese, G.: A multi classifier approach for supporting Alzheimer’s diagnosis based on handwriting analysis. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 559–574. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_43

    Chapter  Google Scholar 

  12. De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019)

    Article  Google Scholar 

  13. Della Cioppa, A., De Stefano, C., Marcelli, A.: On the role of population size and niche radius in fitness sharing. IEEE Trans. Evol. Comput. 8(6), 580–592 (2004)

    Article  Google Scholar 

  14. Della Cioppa, A., De Stefano, C., Marcelli, A.: Where are the niches? dynamic fitness sharing. IEEE Trans. Evol. Comput. 11(4), 453–465 (2007)

    Article  Google Scholar 

  15. Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faundez-Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson’s disease. Artif. Intell. Med. 67, 39–46 (2016)

    Article  Google Scholar 

  16. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  17. Garre-Olmo, J., Faúndez-Zanuy, M., López-de Ipiña, K., Calvó-Perxas, L., Turró-Garriga, O.: Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, alzheimer disease and healthy controls. Curr. Alzheimer Res. 14(9), 960–968 (2017)

    Article  Google Scholar 

  18. Gautier, S., Rosa-Neto, P., Morais, J.a., Webster, C.: World Alzheimer Report 2021: Journey through the diagnosis of dementia. ADI, London, UK (2021)

    Google Scholar 

  19. Gonzalez, F., Dasgupta, D., Kozma, R.: Combining negative selection and classification techniques for anomaly detection. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 1, p. 705–710 (2002)

    Google Scholar 

  20. Gupta, K.D., Dasgupta, D.: Negative selection algorithm research and applications in the last decade: A review (2021)

    Google Scholar 

  21. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995). https://doi.org/10.1109/ICDAR.1995.598994

  22. Ishikawa, T., et al.: Handwriting features of multiple drawing tests for early detection of Alzheimer’s disease: a preliminary result. In: MedInfo, pp. 168–172 (2019)

    Google Scholar 

  23. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurgery Psychiatry 79(4), 368–376 (2008)

    Article  Google Scholar 

  24. Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with “probably adequate’’ detector coverage. Inf. Sci. 179(10), 1390–1406 (2009)

    Article  Google Scholar 

  25. Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A.S., Cristancho-Lacroix, V.: Characterizing early-stage Alzheimer through spatiotemporal dynamics of handwriting. IEEE Signal Process. Lett. 25(8), 1136–1140 (2018)

    Article  Google Scholar 

  26. Kawa, J., Bednorz, A., Stepień, P., Derejczyk, J., Bugdol, M.: Spatial and dynamical handwriting analysis in mild cognitive impairment. Comput. Biol. Med. 82, 21–28 (2017)

    Article  Google Scholar 

  27. Lasisi, A., Ghazali, R., Herawan, T.: Chapter 11 - application of real-valued negative selection algorithm to improve medical diagnosis. In: Al-Jumeily, D., Hussain, A., Mallucci, C., Oliver, C. (eds.) Applied Computing in Medicine and Health, pp. 231–243. Emerging Topics in Computer Science and Applied Computing, Morgan Kaufmann, Boston (2016)

    Chapter  Google Scholar 

  28. Le, W., Dong, J., Li, S., Korczyn, A.D.: Can biomarkers help the early diagnosis of parkinson’s disease? Neurosci. Bull. 33(5), 535–542 (2017)

    Article  Google Scholar 

  29. Li, T., Le, W.: Biomarkers for parkinson’s disease: How good are they? Neurosci. Bull. 36(2), 183–194 (2020)

    Article  Google Scholar 

  30. Myszczynska, M.A., et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020)

    Article  Google Scholar 

  31. Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)

    Google Scholar 

  32. Parziale, A., Della Cioppa, A., Senatore, R., Marcelli, A.: A decision tree for automatic diagnosis of parkinson’s disease from offline drawing samples: Experiments and findings. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) Image Analysis and Processing - ICIAP 2019, pp. 196–206 (2019)

    Google Scholar 

  33. Parziale, A., Senatore, R., Marcelli, A.: Exploring speed-accuracy tradeoff in reaching movements: a neurocomputational model. Neural Comput. Appl. 32, 13377–13403 (2020)

    Article  Google Scholar 

  34. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  35. Pereira, C.R., et al.: A step towards the automated diagnosis of parkinson’s disease: analyzing handwriting movements. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171–176 (2015)

    Google Scholar 

  36. Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P.: Deep learning-aided parkinson’s disease diagnosis from handwritten dynamics. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 340–346 (Oct 2016)

    Google Scholar 

  37. Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 136, 79–88 (2016)

    Google Scholar 

  38. Pirlo, G., Diaz, M., Ferrer, M.A., Impedovo, D., Occhionero, F., Zurlo, U.: Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 290–297. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_36

    Chapter  Google Scholar 

  39. Prince, M., Wimo, A., Guercet, M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer Report 2015: The Global Impact of Dementia. ADI, London, UK (2015)

    Google Scholar 

  40. Rosenblum, S., Engel-Yeger, B., Fogel, Y.: Age-related changes in executive control and their relationships with activity performance in handwriting. Hum. Mov. Sci. 32(2), 363–376 (2013)

    Article  Google Scholar 

  41. Senatore, R., Marcelli, A.: A neural scheme for procedural motor learning of handwriting. In: International Conference on Frontiers on Handwriting Recognition. pp. 659–664. Springer (2012)

    Google Scholar 

  42. Senatore, R., Marcelli, A.: A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and parkinson’s disease patients in drawing loop shapes. Hum. Mov. Sci. 65, 89–101 (2019)

    Article  Google Scholar 

  43. Tanveer, M., et al.: Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Trans. Multimedia Comput. Commun. Appl. 16(1s), 1–35 (2020)

    Google Scholar 

  44. Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146(1), 159–170 (1997)

    Article  Google Scholar 

  45. Teulings, H.L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Hum. Mov. Sci. 10(2–3), 315–334 (1991)

    Article  Google Scholar 

  46. Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinson’s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurgery Psychiatry 74(11), 1502–1508 (2003)

    Article  Google Scholar 

  47. Vessio, G.: Dynamic handwriting analysis for neurodegenerative disease assessment: A literary review. Appl. Sci. 9(21), 4666 (2019)

    Article  Google Scholar 

  48. Werner, P., Rosenblum, S., Bar-On, G., Heinik, J., Korczyn, A.: Handwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairment. J. Gerontol. B Psychol. Sci. Soc. Sci. 61(4), P228–P236 (2006)

    Article  Google Scholar 

  49. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Gregorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Gregorio, G., Della Cioppa, A., Marcelli, A. (2022). Negative Selection Algorithm for Alzheimer’s Diagnosis: Design and Performance Evaluation. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics