Abstract
We present a method for discriminating between healthy subjects and Alzheimer’s diseases patients from on-line handwriting. Departing from the current state of the art methods, that adopts machine learning methods and tools for building the classifier, we propose to apply the Negative Selection Algorithm. The major advantage of the proposed method in comparison with others machine learning techniques is that it requires only data by healthy subjects to build the classifier, thus avoiding to collect patient data, as requested by competing techniques. Experiments results involving data produced by 175 subjects show that the proposed method achieves state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset is publicly available on the following page: http://webuser.unicas.it/fontanella/darwin/.
References
A V, A.S., Lones, M.A., Smith, S.L., Vallejo, M.: Evaluation of recurrent neural network models for parkinson’s disease classification using drawing data. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1702–1706 (2021). https://doi.org/10.1109/EMBC46164.2021.9630106
Agarwal, D., Marques, G., de la Torre-Díez, I., Franco Martin, M.A., García Zapiraín, B., Martín Rodríguez, F.: Transfer learning for alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors 21(21) (2021)
Alissa, M., et al.: Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Comput. Appl. 34(2), 1433–1453 (2022). https://doi.org/10.1007/s00521-021-06469-7
Ba-Karait, N.O., Shamsuddin, S.M., Sudirman, R.: Eeg signals classification using a hybrid method based on negative selection and particle swarm optimization. In: Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 427–438 (2012)
Broderick, M.P., Van Gemmert, A.W., Shill, H.A., Stelmach, G.E.: Hypometria and bradykinesia during drawing movements in individuals with parkinson’s disease. Exp. Brain Res. 197(3), 223–233 (2009)
Cavaliere, F., Della Cioppa, A., Marcelli, A., Parziale, A., Senatore, R.: Parkinson’s disease diagnosis: towards grammar-based explainable artificial intelligence. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6 (2020). https://doi.org/10.1109/ISCC50000.2020.9219616
Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Comput. Sci. 141, 466–471 (2018)
Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Handwriting analysis to support Alzheimer’s disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 143–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_13
Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Using handwriting features to characterize cognitive impairment. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 683–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_62
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
De Gregorio, G., Desiato, D., Marcelli, A., Polese, G.: A multi classifier approach for supporting Alzheimer’s diagnosis based on handwriting analysis. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 559–574. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_43
De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019)
Della Cioppa, A., De Stefano, C., Marcelli, A.: On the role of population size and niche radius in fitness sharing. IEEE Trans. Evol. Comput. 8(6), 580–592 (2004)
Della Cioppa, A., De Stefano, C., Marcelli, A.: Where are the niches? dynamic fitness sharing. IEEE Trans. Evol. Comput. 11(4), 453–465 (2007)
Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faundez-Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson’s disease. Artif. Intell. Med. 67, 39–46 (2016)
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202–212 (1994)
Garre-Olmo, J., Faúndez-Zanuy, M., López-de Ipiña, K., Calvó-Perxas, L., Turró-Garriga, O.: Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, alzheimer disease and healthy controls. Curr. Alzheimer Res. 14(9), 960–968 (2017)
Gautier, S., Rosa-Neto, P., Morais, J.a., Webster, C.: World Alzheimer Report 2021: Journey through the diagnosis of dementia. ADI, London, UK (2021)
Gonzalez, F., Dasgupta, D., Kozma, R.: Combining negative selection and classification techniques for anomaly detection. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 1, p. 705–710 (2002)
Gupta, K.D., Dasgupta, D.: Negative selection algorithm research and applications in the last decade: A review (2021)
Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995). https://doi.org/10.1109/ICDAR.1995.598994
Ishikawa, T., et al.: Handwriting features of multiple drawing tests for early detection of Alzheimer’s disease: a preliminary result. In: MedInfo, pp. 168–172 (2019)
Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurgery Psychiatry 79(4), 368–376 (2008)
Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with “probably adequate’’ detector coverage. Inf. Sci. 179(10), 1390–1406 (2009)
Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A.S., Cristancho-Lacroix, V.: Characterizing early-stage Alzheimer through spatiotemporal dynamics of handwriting. IEEE Signal Process. Lett. 25(8), 1136–1140 (2018)
Kawa, J., Bednorz, A., Stepień, P., Derejczyk, J., Bugdol, M.: Spatial and dynamical handwriting analysis in mild cognitive impairment. Comput. Biol. Med. 82, 21–28 (2017)
Lasisi, A., Ghazali, R., Herawan, T.: Chapter 11 - application of real-valued negative selection algorithm to improve medical diagnosis. In: Al-Jumeily, D., Hussain, A., Mallucci, C., Oliver, C. (eds.) Applied Computing in Medicine and Health, pp. 231–243. Emerging Topics in Computer Science and Applied Computing, Morgan Kaufmann, Boston (2016)
Le, W., Dong, J., Li, S., Korczyn, A.D.: Can biomarkers help the early diagnosis of parkinson’s disease? Neurosci. Bull. 33(5), 535–542 (2017)
Li, T., Le, W.: Biomarkers for parkinson’s disease: How good are they? Neurosci. Bull. 36(2), 183–194 (2020)
Myszczynska, M.A., et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020)
Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)
Parziale, A., Della Cioppa, A., Senatore, R., Marcelli, A.: A decision tree for automatic diagnosis of parkinson’s disease from offline drawing samples: Experiments and findings. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) Image Analysis and Processing - ICIAP 2019, pp. 196–206 (2019)
Parziale, A., Senatore, R., Marcelli, A.: Exploring speed-accuracy tradeoff in reaching movements: a neurocomputational model. Neural Comput. Appl. 32, 13377–13403 (2020)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
Pereira, C.R., et al.: A step towards the automated diagnosis of parkinson’s disease: analyzing handwriting movements. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171–176 (2015)
Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P.: Deep learning-aided parkinson’s disease diagnosis from handwritten dynamics. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 340–346 (Oct 2016)
Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 136, 79–88 (2016)
Pirlo, G., Diaz, M., Ferrer, M.A., Impedovo, D., Occhionero, F., Zurlo, U.: Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 290–297. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_36
Prince, M., Wimo, A., Guercet, M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer Report 2015: The Global Impact of Dementia. ADI, London, UK (2015)
Rosenblum, S., Engel-Yeger, B., Fogel, Y.: Age-related changes in executive control and their relationships with activity performance in handwriting. Hum. Mov. Sci. 32(2), 363–376 (2013)
Senatore, R., Marcelli, A.: A neural scheme for procedural motor learning of handwriting. In: International Conference on Frontiers on Handwriting Recognition. pp. 659–664. Springer (2012)
Senatore, R., Marcelli, A.: A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and parkinson’s disease patients in drawing loop shapes. Hum. Mov. Sci. 65, 89–101 (2019)
Tanveer, M., et al.: Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Trans. Multimedia Comput. Commun. Appl. 16(1s), 1–35 (2020)
Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146(1), 159–170 (1997)
Teulings, H.L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Hum. Mov. Sci. 10(2–3), 315–334 (1991)
Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinson’s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurgery Psychiatry 74(11), 1502–1508 (2003)
Vessio, G.: Dynamic handwriting analysis for neurodegenerative disease assessment: A literary review. Appl. Sci. 9(21), 4666 (2019)
Werner, P., Rosenblum, S., Bar-On, G., Heinik, J., Korczyn, A.: Handwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairment. J. Gerontol. B Psychol. Sci. Soc. Sci. 61(4), P228–P236 (2006)
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
De Gregorio, G., Della Cioppa, A., Marcelli, A. (2022). Negative Selection Algorithm for Alzheimer’s Diagnosis: Design and Performance Evaluation. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-02462-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-02461-0
Online ISBN: 978-3-031-02462-7
eBook Packages: Computer ScienceComputer Science (R0)