On the Difficulty of Evolving Permutation Codes | SpringerLink
Skip to main content

On the Difficulty of Evolving Permutation Codes

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

Combinatorial designs provide an interesting source of optimization problems. Among them, permutation codes are particularly interesting given their applications in powerline communications, flash memories, and block ciphers. This paper addresses the design of permutation codes by evolutionary algorithms (EA) by developing an iterative approach. Starting from a single random permutation, new permutations satisfying the minimum distance constraint are incrementally added to the code by using a permutation-based EA. We investigate our approach against four different fitness functions targeting the minimum distance requirement at different levels of detail and with two different policies concerning code expansion and pruning. We compare the results achieved by our EA approach to those of a simple random search, remarking that neither method scales well with the problem size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Framework available at http://ecf.zemris.fer.hr/.

References

  1. Banzhaf, W.: The “molecular’’ traveling salesman. Biol. Cybern. 64(1), 7–14 (1990)

    Article  Google Scholar 

  2. Chu, W., Colbourn, C.J., Dukes, P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32(1–3), 51–64 (2004)

    Article  MathSciNet  Google Scholar 

  3. Colbourn, C.J., Dinitz, J.H.: Combinatorial designs. In: Rosen, K.H., Michaels, J.G., Gross, J.L., Grossman, J.W., Shier, D.R. (eds.) Handbook of Discrete and Combinatorial Mathematics. CRC Press (1999)

    Google Scholar 

  4. Colbourn, C.J., Kløve, T., Ling, A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inf. Theory 50(6), 1289–1291 (2004)

    Article  MathSciNet  Google Scholar 

  5. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, Grundlehren der mathematischen Wissenschaften, vol. 290. Springer (1988). https://doi.org/10.1007/978-1-4757-6568-7

  6. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Standard. AES), Second Edition. Springer (2020). https://doi.org/10.1007/978-3-662-04722-4

  7. Ferreira, H.C., Vinck, A.H.: Interference cancellation with permutation trellis codes. In: IEEE 52nd Vehicular Technology Conference Fall 2000, vol. 5, pp. 2401–2407. IEEE (2000)

    Google Scholar 

  8. Fogel, D.B.: Applying evolutionary programming to selected traveling salesman problems. Cybern. Syst. 24(1), 27–36 (1993)

    Article  MathSciNet  Google Scholar 

  9. Goldberg, D.E., Jr., R.L.: Alleles, loci and the traveling salesman problem. In: Grefenstette, J.J. (ed.) Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, pp. 154–159. Lawrence Erlbaum Associates (1985)

    Google Scholar 

  10. Han Vinck, A.: Coded modulation for powerline communications. AEU Int. J. Eletron. Commun. 54(1), 45–49 (2000)

    Google Scholar 

  11. Jiang, A., Mateescu, R., Schwartz, M., Bruck, J.: Rank modulation for flash memories. In: Kschischang, F.R., Yang, E. (eds.) 2008 IEEE International Symposium on Information Theory, ISIT 2008, Toronto, ON, Canada, 6–11 July 2008, pp. 1731–1735. IEEE (2008)

    Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the complexity of computer computations, held 20–22 March 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  14. Knezevic, K., Picek, S., Mariot, L., Jakobovic, D., Leporati, A.: The design of (almost) disjunct matrices by evolutionary algorithms. In: Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M.A. (eds.) Theory and Practice of Natural Computing - 7th International Conference, TPNC 2018, Dublin, Ireland, December 12-14, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11324, pp. 152–163. Springer (2018). https://doi.org/10.1007/978-3-030-04070-3_12

  15. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum, Germany, 20–23 March 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9783, pp. 101–120. Springer (2016). https://doi.org/10.1007/978-3-662-52993-5_6

  16. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the design of orthogonal Latin squares based on cellular automata. In: Bosman, P.A.N. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 306–313. ACM (2017)

    Google Scholar 

  17. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary orthogonal arrays. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, L.D. (eds.) Parallel Problem Solving from Nature - PPSN XV - 15th International Conference, Coimbra, Portugal, 8–12 September 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11101, pp. 121–133. Springer (2018). https://doi.org/10.1007/978-3-319-99253-2_10

  18. Montemanni, R., Barta, J., Smith, D.H.: Graph colouring and branch and bound approaches for permutation code algorithms. In: Rocha, Á., Correia, A.M.R., Adeli, H., Reis, L.P., Teixeira, M.M. (eds.) New Advances in Information Systems and Technologies - Volume 1 [WorldCIST’16, Recife, Pernambuco, Brazil, March 22–24, 2016]. Advances in Intelligent Systems and Computing, vol. 444, pp. 223–232. Springer (2016). https://doi.org/10.1007/978-3-319-31232-3_21

  19. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: Grefenstette, J.J. (ed.) Proceedings of the 2nd International Conference on Genetic Algorithms, Cambridge, MA, USA, July 1987, pp. 224–230. Lawrence Erlbaum Associates (1987)

    Google Scholar 

  20. Smith, D.H., Montemanni, R.: A new table of permutation codes. Des. Codes Cryptogr. 63(2), 241–253 (2012)

    Article  MathSciNet  Google Scholar 

  21. Smith, D.H., Montemanni, R.: Permutation codes with specified packing radius. Des. Codes Cryptogr. 69(1), 95–106 (2013)

    Article  MathSciNet  Google Scholar 

  22. Stinson, D.R.: Combinatorial designs - constructions and analysis. Springer (2004). https://doi.org/10.1007/b97564

  23. Syswerda, G., Palmucci, J.: The application of genetic algorithms to resource scheduling. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 502–508. Morgan Kaufmann (1991)

    Google Scholar 

  24. De la Torre, D., Colbourn, C., Ling, A.: An application of permutation arrays to block ciphers. Congressus Numerantium, pp. 5–8 (2000)

    Google Scholar 

  25. Vaudenay, S.: On the need for multipermutations: cryptanalysis of MD4 and SAFER. In: Preneel, B. (ed.) Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14–16 December 1994, Proceedings. Lecture Notes in Computer Science, vol. 1008, pp. 286–297. Springer (1994). https://doi.org/10.1007/3-540-60590-8_22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mariot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mariot, L., Picek, S., Jakobovic, D., Djurasevic, M., Leporati, A. (2022). On the Difficulty of Evolving Permutation Codes. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics