TFNet: Transformer Fusion Network for Ultrasound Image Segmentation | SpringerLink
Skip to main content

TFNet: Transformer Fusion Network for Ultrasound Image Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

  • 1608 Accesses

Abstract

Automatic lesion segmentation in ultrasound helps diagnose diseases. Segmenting lesion regions accurately from ultrasound images is a challenging task due to the difference in the scale of the lesion and the uneven intensity distribution in the lesion area. Recently, Convolutional Neural Networks have achieved tremendous success on medical image segmentation tasks. However, due to the inherent locality of convolution operations, it is limited in modeling long-range dependency. In this paper, we study the more challenging problem on capturing long-range dependencies and multi-scale targets without losing detailed information. We propose a Transformer-based feature fusion network (TFNet), which fuses long-range dependency of multi-scale CNN features via Transformer to effectively solve the above challenges. In order to make up for the defect of Transformer in channel modeling, will be improved by joining the channel attention mechanism. In addition, a loss function is designed to modify the prediction map by computing the variance between the prediction results of the auxiliary classifier and the main classifier. We have conducted experiments on three data sets, and the results show that our proposed method achieves superior performances against various competing methods on ultrasound image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Google Scholar 

  2. Chen, J., et al.: TransUnet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part VII. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

  4. Chu, X., et al.: Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882 (2021)

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Huang, H., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

    Google Scholar 

  9. Liu, Z., Let al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  12. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  13. Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., Romero, E.: An open access thyroid ultrasound image database. In: 10th International Symposium on Medical Information Processing and Analysis, vol. 9287, p. 92870W. International Society for Optics and Photonics (2015)

    Google Scholar 

  14. Rampun, A., Jarvis, D., Griffiths, P., Armitage, P.: Automated 2D fetal brain segmentation of MR images using a deep U-Net. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019, Part II. LNCS, vol. 12047, pp. 373–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_29

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  16. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

  17. Shan, J., Cheng, H.D., Wang, Y.: A novel automatic seed point selection algorithm for breast ultrasound images. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  18. Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., Patel, V.M.: KiU-Net: towards accurate segmentation of biomedical images using over-complete representations. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part IV. LNCS, vol. 12264, pp. 363–373. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_36

  19. Vaswani, A., et al.: Attention is all you need, pp. 5998–6008 (2017)

    Google Scholar 

  20. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7794–7803 (2018)

    Google Scholar 

  21. Xian, M., Zhang, Y., Cheng, H.D.: Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognit. 48(2), 485–497 (2015)

    Google Scholar 

  22. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)

    Google Scholar 

  23. Xue, C., et al.: Global guidance network for breast lesion segmentation in ultrasound images. Med. Image Anal. 70, 101989 (2021)

    Google Scholar 

  24. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vis. 129(4), 1106–1120 (2021)

    Google Scholar 

  25. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of China under Grant 61976145 and Grant 61802267, and in part by the Shenzhen Municipal Science and Technology Innovation Council under Grants JCYJ20180305124834854 and JCYJ20190813100801664.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Lai, Z., Kong, H. (2022). TFNet: Transformer Fusion Network for Ultrasound Image Segmentation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics