Abstract
Analyzing content generated on social media has proven to be a powerful tool for early detection of crisis-related events. Such an analysis may allow for timely action, mitigating or even preventing altogether the effects of a crisis. However, the high noise levels in short texts present in microblogging platforms, combined with the limited publicly available datasets have rendered the task difficult. Here, we propose deep learning models based on a transformer self-attention encoder, which is capable of detecting event-related parts in a text, while also minimizing potential noise levels. Our models’ efficacy is shown by experimenting with CrisisLexT26, achieving up to \(81.6\%\) f1-score and \(92.7\%\) AUC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Crisis-event-detection-in-short-texts - implementation. https://github.com/M4D-MKLab-ITI/Crisis-Event-Detection-in-Short-Texts
Bert for masked lm (2020). shorturl.at/drRV4
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. Stat 1050, 21 (2016)
Burel, G., Alani, H.: Crisis event extraction service (crees)-automatic detection and classification of crisis-related content on social media (2018)
Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 138–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_9
Caragea, C., Silvescu, A., Tapia, A.H.: Identifying informative messages in disaster events using convolutional neural networks. In: International Conference on Information Systems for Crisis Response and Management, pp. 137–147 (2016)
Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classification with knowledge powered attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6252–6259 (2019)
Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-pooling convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 167–176 (2015)
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(ARTICLE), 2493–2537 (2011)
Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451 (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)
Feng, X., Qin, B., Liu, T.: A language-independent neural network for event detection. Sci. China Inf. Sci. 61(9), 1–12 (2018). https://doi.org/10.1007/s11432-017-9359-x
Feng, Y., Cheng, Y.: Short text sentiment analysis based on multi-channel CNN with multi-head attention mechanism. IEEE Access 9, 19854–19863 (2021)
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International Conference on Machine Learning, pp. 1243–1252. PMLR (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hong, Y., Zhang, J., Ma, B., Yao, J., Zhou, G., Zhu, Q.: Using cross-entity inference to improve event extraction. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, pp. 1127–1136 (2011)
Kabir, M.Y., Madria, S.: A deep learning approach for tweet classification and rescue scheduling for effective disaster management. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 269–278 (2019)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha, Qatar, October 2014. https://doi.org/10.3115/v1/D14-1181, https://www.aclweb.org/anthology/D14-1181
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, Q., Ji, H., Hong, Y., Li, S.: Constructing information networks using one single model. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1846–1851 (2014)
Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with global features. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 73–82 (2013)
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Liu, S., Chen, Y., Liu, K., Zhao, J.: Exploiting argument information to improve event detection via supervised attention mechanisms. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1789–1798 (2017)
Liu, Y., et al.: Roberta: A robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Nguyen, D., Al Mannai, K.A., Joty, S., Sajjad, H., Imran, M., Mitra, P.: Robust classification of crisis-related data on social networks using convolutional neural networks. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017)
Nguyen, T., Grishman, R.: Graph convolutional networks with argument-aware pooling for event detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural networks. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 300–309 (2016)
Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 365–371 (2015)
Olteanu, A., Vieweg, S., Castillo, C.: What to expect when the unexpected happens: Social media communications across crises. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (2015)
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566 (2015)
Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017)
Yan, H., Jin, X., Meng, X., Guo, J., Cheng, X.: Event detection with multi-order graph convolution and aggregated attention. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5770–5774 (2019)
Acknowledgements
This research has received funding from the European Union’s H2020 research and innovation programme as part of the INFINITY (GA No 883293) and AIDA (GA No 883596) projects.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kyriakidis, P., Chatzakou, D., Tsikrika, T., Vrochidis, S., Kompatsiaris, I. (2022). Leveraging Transformer Self Attention Encoder for Crisis Event Detection in Short Texts. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-99739-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99738-0
Online ISBN: 978-3-030-99739-7
eBook Packages: Computer ScienceComputer Science (R0)