Exploring Unique App Signature of the Depressed and Non-depressed Through Their Fingerprints on Apps | SpringerLink
Skip to main content

Exploring Unique App Signature of the Depressed and Non-depressed Through Their Fingerprints on Apps

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2021)

Abstract

Growing research on re-identification through app usage behavior reveals the privacy threat in having smartphone usage data to third parties. However, re-identifiability of a vulnerable group like the depressed is unexplored. We fill this knowledge gap through an in the wild study on 100 students’ PHQ-9 scale’s data and 7 days’ logged app usage data. We quantify the uniqueness and re-identifiability through exploration of minimum hamming distance in terms of the set of used apps. Our findings show that using app usage data, each of the depressed and non-depressed students is re-identifiable. In fact, using only 7 h’ data of a week, on average, 91% of the depressed and 88% of the non-depressed are re-identifiable. Moreover, data of a single app category (i.e., Tools) can also be used to re-identify each depressed student. Furthermore, we find that the rate of uniqueness among the depressed students is significantly higher in some app categories. For instance, in the Social Media category, the rate of uniqueness is 9% higher (P = .02, Cohen’s d = 1.31) and in the Health & Fitness category, this rate is 8% higher (P = .005, Cohen’s d = 1.47) than the non-depressed group. Our findings suggest that each of the depressed students has a unique app signature which makes them re-identifiable. Therefore, during the design of the privacy protecting systems, designers need to consider the uniqueness of them to ensure better privacy for this vulnerable group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Böhmer, M., Hecht, B., Schöning, J., Krüger, A., Bauer, G.: Falling asleep with Angry Birds, Facebook and Kindle. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services - MobileHCI 2011. ACM Press (2011). https://doi.org/10.1145/2037373.2037383

  2. Zang, H., Bolot, J.: Anonymization of location data does not work. In: Proceedings of the 17th Annual International Conference on Mobile Computing and Networking - MobiCom 2011. ACM Press (2011). https://doi.org/10.1145/2030613.2030630

  3. Zhao, S., Ramos, J., Tao, J., et al.: Discovering different kinds of smartphone users through their application usage behaviors. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM (2016). https://doi.org/10.1145/2971648.2971696

  4. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy. IEEE (2012). https://doi.org/10.1109/sp.2012.16

  5. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.-R.: Unsafe exposure analysis of mobile in-app advertisements. In: Proceedings of the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks - WISEC 2012. ACM Press (2012). https://doi.org/10.1145/2185448.2185464

  6. Welke, P., Andone, I., Blaszkiewicz, K., Markowetz, A.: Differentiating smartphone users by app usage. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM (2016). https://doi.org/10.1145/2971648.2971707

  7. de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3(1) (2013). https://doi.org/10.1038/srep01376

  8. Lee, U., Lee, J., Ko, M., et al.: Hooked on smartphones. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2014). https://doi.org/10.1145/2556288.2557366

  9. Shin, C., Dey, A.K.: Automatically detecting problematic use of smartphones. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM (2013). https://doi.org/10.1145/2493432.2493443

  10. Sekara, V., Alessandretti, L., Mones, E., Jonsson, H.: Temporal and cultural limits of privacy in smartphone app usage. Sci. Rep. 11(1) (2021). https://doi.org/10.1038/s41598-021-82294-1

  11. Tu, Z., Li, R., Li, Y., et al.: Your apps give you away: distinguishing mobile users by their appusage fingerprints. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3), 1–23 (2018). https://doi.org/10.1145/3264948

    Article  Google Scholar 

  12. Kroenke, K., Spitzer, R.L., Williams, J.B.W.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–613 (2001). https://doi.org/10.1046/j.1525-1497.2001.016009606.x

    Article  Google Scholar 

  13. Sarda, A., Munuswamy, S., Sarda, S., Subramanian, V.: Using passive smartphone sensing for improved risk stratification of patients with depression and diabetes: cross-sectional observational study. JMIR Mhealth Uhealth 7(1), e11041 (2019). https://doi.org/10.2196/11041

    Article  Google Scholar 

  14. Li, H., Zhu, H., Du, S., Liang, X., Shen, X.: Privacy leakage of location sharing in mobile social networks: attacks and defense. IEEE Trans. Dependable Secure Comput. 15(4), 646–660 (2018). https://doi.org/10.1109/tdsc.2016.2604383

    Article  Google Scholar 

  15. Guynn, J.: Anxiety, depression and PTSD: The hidden epidemic of data breaches and cyber crimes. USA Today. https://www.usatoday.com/story/tech/conferences/2020/02/21/data-breach-tips-mental-health-toll-depression-anxiety/4763823002/. Accessed 23 Feb 2021

  16. Bentley, F., Church, K., Harrison, B., Lyons, K., Rafalow, M.: Three Hours a Day: Understanding Current Teen Practices of Smartphone Application Use (2015)

    Google Scholar 

  17. Gordon, M.L., Gatys, L., Guestrin, C., Bigham, J.P., Trister, A., Patel, K.: App usage predicts cognitive ability in older adults. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM (2019). https://doi.org/10.1145/3290605.3300398

  18. Hirschprung, R.S., Leshman, O.: Privacy disclosure by de-anonymization using music preferences and selections. Telematics Inform. 59, 101564 (2021). https://doi.org/10.1016/j.tele.2021.101564

    Article  Google Scholar 

  19. Enck, W., Gilbert, P., Han, S., et al.: TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32(2), 1–29 (2014). https://doi.org/10.1145/2619091

    Article  Google Scholar 

  20. Rozgonjuk, D., Levine, J.C., Hall, B.J., Elhai, J.D.: The association between problematic smartphone use, depression and anxiety symptom severity, and objectively measured smartphone use over one week. Comput. Hum. Behav. 87, 10–17 (2018). https://doi.org/10.1016/j.chb.2018.05.019

    Article  Google Scholar 

  21. Mohamed, S.M., Mostafa, M.H.: Impact of smartphone addiction on depression and self-esteem among nursing students. Nurs Open 7(5), 1346–1353 (2020). https://doi.org/10.1002/nop2.506

    Article  Google Scholar 

  22. Noë, B., Turner, L.D., Linden, D.E.J., Allen, S.M., Winkens, B., Whitaker, R.M.: Identifying indicators of smartphone addiction through user-app interaction. Comput. Hum. Behav. 99, 56–65 (2019). https://doi.org/10.1016/j.chb.2019.04.023

    Article  Google Scholar 

  23. Seneviratne, S., Seneviratne, A., Mohapatra, P., Mahanti, A.: Your installed apps reveal your gender and more! In: Proceedings of the ACM MobiCom Workshop on Security and Privacy in Mobile Environments. ACM (2014). https://doi.org/10.1145/2646584.2646587

  24. Wikipedia contributors. Snowball sampling. Wikipedia, The Free Encyclopedia (2020). https://en.wikipedia.org/w/index.php?title=Snowball_sampling&oldid=993212057. Accessed 25 Feb 2021

  25. Wikipedia contributors. Hamming distance. Wikipedia, The Free Encyclopedia (2021). https://en.wikipedia.org/w/index.php?title=Hamming_distance&oldid=1007490112. Accessed 25 Feb 2021

  26. Virtanen, P., Gommers, R., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  27. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57(1), 289–300 (1995). https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  MathSciNet  MATH  Google Scholar 

  28. Manea, L., Gilbody, S., McMillan, D.: A diagnostic meta-analysis of the Patient Health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. Gen. Hosp. Psychiatry 37(1), 67–75 (2015). https://doi.org/10.1016/j.genhosppsych.2014.09.009

    Article  Google Scholar 

  29. Ahmed, Md.S., Rony, R.J., Hasan, T., Ahmed, N.: Smartphone usage behavior between depressed and non-depressed students. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers. ACM (2020). https://doi.org/10.1145/3410530.3414441

  30. de Montjoye, Y.-A., Radaelli, L., Singh, V.K., Pentland, A.S.: Unique in the shopping mall: on the reidentifiability of credit card metadata. Science 347(6221), 536–539 (2015). https://doi.org/10.1126/science.1256297

    Article  Google Scholar 

  31. Kroenke, K., Strine, T.W., Spitzer, R.L., Williams, J.B.W., Berry, J.T., Mokdad, A.H.: The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 114(1–3), 163–173 (2009). https://doi.org/10.1016/j.jad.2008.06.026

    Article  Google Scholar 

  32. Gulyás, G.G., Acs, G., Castelluccia, C.: Near-optimal fingerprinting with constraints. Proc. Priv. Enhancing Technol. 2016(4), 470–487 (2016). https://doi.org/10.1515/popets-2016-0051

    Article  Google Scholar 

  33. Wang, R., Wang, W., daSilva, A., et al.: Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 1–26 (2018). https://doi.org/10.1145/3191775

    Article  Google Scholar 

  34. Islam, S., Akter, R., Sikder, T., Griffiths, M.D.: Prevalence and factors associated with depression and anxiety among first-year university students in bangladesh: a cross-sectional study. Int. J. Ment. Heal. Addict. 1–14 (2020). https://doi.org/10.1007/s11469-020-00242-y

  35. Achara, J.P., Acs, G., Castelluccia, C.: On the unicity of smartphone applications. In: Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society. ACM (2015). https://doi.org/10.1145/2808138.2808146

  36. Marshall, J.: Twitter is tracking users’ installed apps for ad targeting. Wall Street J. (2014). https://www.wsj.com/articles/BL-269B-2167. Accessed 9 Mar 2021

  37. Dredge, S.: Twitter scanning users’ other apps to help deliver ‘tailored content’. The Guardian (2014). https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content. Accessed 9 Mar 2021

  38. Binns, R., Lyngs, U., Van Kleek, M., Zhao, J., Libert, T., Shadbolt, N.: Third party tracking in the mobile ecosystem. In: Proceedings of the 10th ACM Conference on Web Science. ACM (2018). https://doi.org/10.1145/3201064.3201089

  39. Privacy International. How Apps on Android Share Data with Facebook. Privacy International (2018). https://privacyinternational.org/sites/default/files/2018-12/How%20Apps%20on%20Android%20Share%20Data%20with%20Facebook%20-%20Privacy%20International%202018.pdf. Accessed 10 Mar 2021

  40. Morrison, A., Xiong, X., Higgs, M., Bell, M., Chalmers, M.: A large-scale study of iphone app launch behaviour. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM (2018). https://doi.org/10.1145/3173574.3173918

  41. Doherty, K., Marcano-Belisario, J., Cohn, M., et al.: Engagement with mental health screening on mobile devices. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM (2019). https://doi.org/10.1145/3290605.3300416

  42. Xu, X., Chikersal, P., Doryab, A., et al.: Leveraging routine behavior and contextually-filtered features for depression detection among college students. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(3), 1–33 (2019). https://doi.org/10.1145/3351274

    Article  Google Scholar 

  43. Park, S., Kim, I., Lee, S.W., Yoo, J., Jeong, B., Cha, M.: Manifestation of depression and loneliness on social networks. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. ACM (2015). https://doi.org/10.1145/2675133.2675139

  44. Yoon, S., Verona, E., Schlauch, R., Schneider, S., Rottenberg, J.: Why do depressed people prefer sad music? Emotion 20(4), 613–624 (2020). https://doi.org/10.1037/emo0000573

    Article  Google Scholar 

  45. Rahman, M.: 16.8% Bangladeshi adults suffer from mental health issues. Dhaka Tribune (2019). https://www.dhakatribune.com/bangladesh/dhaka/2019/11/07/survey-nearly-17-of-bangladeshi-adults-suffer-from-mental-health-issues. Accessed 16 Mar 2021

  46. Deshwara, M., Eagle, A.: Taking on taboos. The Daily Star (2017). https://www.thedailystar.net/backpage/taking-taboos-1486447. Accessed 16 Mar 2021

  47. Osmani, V., Maxhuni, A., Grünerbl, A., Lukowicz, P., Haring, C., Mayora, O.: Monitoring activity of patients with bipolar disorder using smart phones. In: Proceedings of International Conference on Advances in Mobile Computing & Multimedia - MoMM 2013. ACM Press (2013). https://doi.org/10.1145/2536853.2536882

  48. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services - MobiSys 2010. ACM Press (2010). https://doi.org/10.1145/1814433.1814453

  49. Do, T.M.T., Blom, J., Gatica-Perez, D.: Smartphone usage in the wild: a large-scale analysis of applications and context. In: Proceedings of the 13th International Conference on Multimodal Interfaces - ICMI 2011. ACM Press (2011). https://doi.org/10.1145/2070481.2070550

  50. Islam, Md.A., Barna, S.D., Raihan, H., Khan, Md.N.A., Hossain, Md.T.: Depression and anxiety among university students during the COVID-19 pandemic in Bangladesh: a web-based cross-sectional survey. PLoS ONE 15(8), e0238162 (2020). https://doi.org/10.1371/journal.pone.0238162. Pakpour, A.H. (ed.)

  51. Koly, K.N., Sultana, S., Iqbal, A., Dunn, J.A., Ryan, G., Chowdhury, A.B.: Prevalence of depression and its correlates among public university students in Bangladesh. J. Affect. Disord. 282, 689–694 (2021). https://doi.org/10.1016/j.jad.2020.12.137

    Article  Google Scholar 

  52. Doryab, A., Villalba, D.K., Chikersal, P., et al.: Identifying behavioral phenotypes of loneliness and social isolation with passive sensing: statistical analysis, data mining and machine learning of smartphone and fitbit data. JMIR Mhealth Uhealth 7(7), e13209 (2019). https://doi.org/10.2196/13209

    Article  Google Scholar 

  53. Saeb, S., Zhang, M., Karr, C.J., et al.: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. J. Med. Internet Res. 17(7), e175 (2015). https://doi.org/10.2196/jmir.4273

    Article  Google Scholar 

  54. Ben-Zeev, D., Buck, B., Chu, P.V., Razzano, L., Pashka, N., Hallgren, K.A.: Transdiagnostic mobile health: smartphone intervention reduces depressive symptoms in people with mood and psychotic disorders. JMIR Ment. Health 6(4), e13202 (2019). https://doi.org/10.2196/13202

    Article  Google Scholar 

  55. Li, Z., Shi, D., Wang, F., Liu, F.: Loneliness recognition based on mobile phone data. In: Proceedings of the 2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (2016). https://doi.org/10.2991/isaeece-16.2016.3

  56. Velloza, J., Njoroge, J., Ngure, K., et al.: Cognitive testing of the PHQ-9 for depression screening among pregnant and postpartum women in Kenya. BMC Psychiatry 20(1) (2020). https://doi.org/10.1186/s12888-020-2435-6

  57. Lu, S.: App Usage - Manage/Track Usage. https://play.google.com/store/apps/details?id=com.a0soft.gphone.uninstaller. Accessed 28 Mar 2021

  58. Labs, M.: YourHour - Phone Addiction Tracker & Controller. https://play.google.com/store/apps/details?id=com.mindefy.phoneaddiction.mobilepe. Accessed 28 Mar 2021

  59. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  60. Yang, Y., Zhang, Z., Miklau, G., Winslett, M., Xiao, X.: Differential privacy in data publication and analysis. In: Proceedings of the 2012 International Conference on Management of Data - SIGMOD 2012. ACM Press (2012). https://doi.org/10.1145/2213836.2213910

  61. Holden, J.M., Sagovsky, R., Cox, J.L.: Counselling in a general practice setting: controlled study of health visitor intervention in treatment of postnatal depression. BMJ 298(6668), 223–226 (1989). https://doi.org/10.1136/bmj.298.6668.223

    Article  Google Scholar 

  62. Sarsenbayeva, Z., Marini, G., van Berkel, N., et al.: Does smartphone use drive our emotions or vice versa? A causal analysis. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM (2020). https://doi.org/10.1145/3313831.3376163

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Sabbir Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, M.S., Ahmed, N. (2022). Exploring Unique App Signature of the Depressed and Non-depressed Through Their Fingerprints on Apps. In: Lewy, H., Barkan, R. (eds) Pervasive Computing Technologies for Healthcare. PH 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-030-99194-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99194-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99193-7

  • Online ISBN: 978-3-030-99194-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics