Abstract
Kidney cancer is one of the most common malignancies worldwide. Early diagnosis is an effective way to reduce the mortality and automated segmentation of kidney tumor in computed tomography scans is an important way to assisted kidney cancer diagnosis. In this paper, we propose a convolution-and-transformer network (COTRNet) for end to end kidney, kidney tumor, and kidney cyst segmentation. COTRNet is an encoder-decoder architecture where the encoder and the decoder are connected by skip connections. The encoder consists of four convolution-transformer layers to learn multi-scale features which have local and global receptive fields crucial for accurate segmentation. In addition, we leverage pretrained weights and deep supervision to further improve segmentation performance. Experimental results on the 2021 kidney and kidney tumor segmentation (kits21) challenge demonstrated that our method achieved average dice of 61.6%, surface dice of 49.1%, and tumor dice of 50.52%, respectively, which ranked the \(22_{th}\) place on the kits21 challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End Object Detection with Transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, pp. 770–778 (2016)
Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KITS19 challenge. Med. Image Anal. 67, 101821 (2021)
Hou, X., et al.: A triple-stage self-guided network for kidney tumor segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 341–344. IEEE (2020)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Hu, S., Zhang, J., Xia, Y.: Boundary-aware network for kidney tumor segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 189–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_20
Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)
Jackson, P., Hardcastle, N., Dawe, N., Kron, T., Hofman, M.S., Hicks, R.J.: Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front. Oncol. 8, 215 (2018)
Kutikov, A., Uzzo, R.G.: The renal nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182(3), 844–853 (2009)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial intelligence and statistics. In: PMLR, pp. 562–570 (2015)
Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430 (2018)
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Ozdemir, O., Russell, R.L., Berlin, A.A.: A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Trans. Med. Imaging 39(5), 1419–1429 (2019)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-Nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)
Yu, Q., Shi, Y., Sun, J., Gao, Y., Zhu, J., Dai, Y.: Crossbar-Net: a novel convolutional neural network for kidney tumor segmentation in CT images. IEEE Trans. Image Process. 28(8), 4060–4074 (2019)
Zhang, Y., Liu, H., Hu, Q.: Transfuse: Fusing transformers and CNNs for medical image segmentation. arXiv preprint arXiv:2102.08005 (2021)
Zheng, S., et al.: A dual-attention V-network for pulmonary lobe segmentation in CT scans. IET Image Process. 15(8), 1644–1654 (2021)
Zheng, S., et al.: MDCC-Net: multiscale double-channel convolution u-net framework for colorectal tumor segmentation. Comput. Biol. Med. 130, 104183 (2021)
Zhou, Z., Siddiquee, R., Mahfuzur, Md., Tajbakhsh, N., Liang, J.: UNet++: a Nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Acknowledgment
This work was supported by the Fujian Provincial Natural Science Foundation project (Grant No. 2021J02019, 2020J01472).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Shen, Z., Yang, H., Zhang, Z., Zheng, S. (2022). Automated Kidney Tumor Segmentation with Convolution and Transformer Network. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds) Kidney and Kidney Tumor Segmentation. KiTS 2021. Lecture Notes in Computer Science, vol 13168. Springer, Cham. https://doi.org/10.1007/978-3-030-98385-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-98385-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98384-0
Online ISBN: 978-3-030-98385-7
eBook Packages: Computer ScienceComputer Science (R0)