Automated Kidney Tumor Segmentation with Convolution and Transformer Network | SpringerLink
Skip to main content

Automated Kidney Tumor Segmentation with Convolution and Transformer Network

  • Conference paper
  • First Online:
Kidney and Kidney Tumor Segmentation (KiTS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13168))

Included in the following conference series:

Abstract

Kidney cancer is one of the most common malignancies worldwide. Early diagnosis is an effective way to reduce the mortality and automated segmentation of kidney tumor in computed tomography scans is an important way to assisted kidney cancer diagnosis. In this paper, we propose a convolution-and-transformer network (COTRNet) for end to end kidney, kidney tumor, and kidney cyst segmentation. COTRNet is an encoder-decoder architecture where the encoder and the decoder are connected by skip connections. The encoder consists of four convolution-transformer layers to learn multi-scale features which have local and global receptive fields crucial for accurate segmentation. In addition, we leverage pretrained weights and deep supervision to further improve segmentation performance. Experimental results on the 2021 kidney and kidney tumor segmentation (kits21) challenge demonstrated that our method achieved average dice of 61.6%, surface dice of 49.1%, and tumor dice of 50.52%, respectively, which ranked the \(22_{th}\) place on the kits21 challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End Object Detection with Transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KITS19 challenge. Med. Image Anal. 67, 101821 (2021)

    Google Scholar 

  6. Hou, X., et al.: A triple-stage self-guided network for kidney tumor segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 341–344. IEEE (2020)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Hu, S., Zhang, J., Xia, Y.: Boundary-aware network for kidney tumor segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 189–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_20

  9. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Google Scholar 

  10. Jackson, P., Hardcastle, N., Dawe, N., Kron, T., Hofman, M.S., Hicks, R.J.: Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front. Oncol. 8, 215 (2018)

    Google Scholar 

  11. Kutikov, A., Uzzo, R.G.: The renal nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182(3), 844–853 (2009)

    Google Scholar 

  12. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial intelligence and statistics. In: PMLR, pp. 562–570 (2015)

    Google Scholar 

  13. Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430 (2018)

  14. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  15. Ozdemir, O., Russell, R.L., Berlin, A.A.: A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Trans. Med. Imaging 39(5), 1419–1429 (2019)

    Google Scholar 

  16. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  18. Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  20. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  21. Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-Nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)

    Google Scholar 

  22. Yu, Q., Shi, Y., Sun, J., Gao, Y., Zhu, J., Dai, Y.: Crossbar-Net: a novel convolutional neural network for kidney tumor segmentation in CT images. IEEE Trans. Image Process. 28(8), 4060–4074 (2019)

    Google Scholar 

  23. Zhang, Y., Liu, H., Hu, Q.: Transfuse: Fusing transformers and CNNs for medical image segmentation. arXiv preprint arXiv:2102.08005 (2021)

  24. Zheng, S., et al.: A dual-attention V-network for pulmonary lobe segmentation in CT scans. IET Image Process. 15(8), 1644–1654 (2021)

    Google Scholar 

  25. Zheng, S., et al.: MDCC-Net: multiscale double-channel convolution u-net framework for colorectal tumor segmentation. Comput. Biol. Med. 130, 104183 (2021)

    Google Scholar 

  26. Zhou, Z., Siddiquee, R., Mahfuzur, Md., Tajbakhsh, N., Liang, J.: UNet++: a Nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

Download references

Acknowledgment

This work was supported by the Fujian Provincial Natural Science Foundation project (Grant No. 2021J02019, 2020J01472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Z., Yang, H., Zhang, Z., Zheng, S. (2022). Automated Kidney Tumor Segmentation with Convolution and Transformer Network. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds) Kidney and Kidney Tumor Segmentation. KiTS 2021. Lecture Notes in Computer Science, vol 13168. Springer, Cham. https://doi.org/10.1007/978-3-030-98385-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98385-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98384-0

  • Online ISBN: 978-3-030-98385-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics