Obstacle Detection in Real and Synthetic Harbour Scenarios | SpringerLink
Skip to main content

Obstacle Detection in Real and Synthetic Harbour Scenarios

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13207))

  • 1283 Accesses

Abstract

In the last decade, the autonomous vehicle has been investigated by both academia and industry. One of the open research topics is obstacle detection and avoidance in real-time; for such a challenge, the most used approaches are based on deep learning, especially in the automotive sector. Usually, trained neural networks are used to detect the obstacles by receiving the point clouds from LiDAR as input data. However, this approach is currently not feasible in the marine sector as there are no large datasets of LiDAR point clouds and relatively few RGB images available to train networks. For such a reason, this paper aims to present the first step for the design of an alternative approach that integrates unsupervised and supervised learning algorithms for the detection and tracking of both fixed and moving obstacles. A virtual scenario that can be customized according to the users’ purpose has been developed and used to collect data by emulating the LiDAR and camera behaviour. Moreover, the preliminary on-field LiDAR recording is presented and processed. The unsupervised clustering algorithms have been tested, and the pros and cons of the different clustering approaches are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shenoi, R.A., et al.: Global marine technology trends 2030 (2015)

    Google Scholar 

  2. Zaccone, R., Martelli, M.: A collision avoidance algorithm for ship guidance applications. J. Mar. Eng. Technol. 19(sup1), 62–75 (2020)

    Article  Google Scholar 

  3. Son, N.-S., Kim, S.-Y.: On the sea trial test for the validation of an autonomous collision avoidance system of unmanned surface vehicle, ARAGON. In: OCEANS 2018 MTS/IEEE Charleston. IEEE (2018)

    Google Scholar 

  4. Thombre, S., et al.: Sensors and AI techniques for situational awareness in autonomous ships: a review. IEEE Trans. Intell. Transp. Syst. (2020)

    Google Scholar 

  5. Li, Y., et al.: Deep learning for LiDAR point clouds in autonomous driving: a review. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3412–3432 (2020)

    Article  Google Scholar 

  6. Geiger, A., et al.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  7. Huang, X., et al.: The apolloscape open dataset for autonomous driving and its application. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2702–2719 (2020)

    Article  Google Scholar 

  8. Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., Li, D.: Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans. Industr. Inf. 14(9), 4224–4231 (2018)

    Article  Google Scholar 

  9. Wu, B., et al.: Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2018)

    Google Scholar 

  10. Wu, B., et al.: Squeezesegv2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE (2019)

    Google Scholar 

  11. Xu, C., et al.: Squeezesegv3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1

    Chapter  Google Scholar 

  12. AUV Lab, MIT Sea Grant Marine Perception Dataset. https://seagrant.mit.edu/auvlab-datasets-marine-perception-1/

  13. Muhovic, J., Mandeljc, R., Bovcon, B., Kristan, M., Pers, J.: Obstacle tracking for unmanned surface vessels using 3-D point cloud. IEEE J. Oceanic Eng. 45(3), 786–798 (2020)

    Article  Google Scholar 

  14. Sorial, M., et al.: Towards a real time obstacle detection system for unmanned surface vehicles. In: OCEANS 2019 MTS/IEEE SEATTLE. IEEE (2019)

    Google Scholar 

  15. Villa, J., Aaltonen, J., Koskinen, K.T.: Path-following with lidar-based obstacle avoidance of an unmanned surface vehicle in harbor conditions. IEEE/ASME Trans. Mechatron. 25(4), 1812–1820 (2020)

    Article  Google Scholar 

  16. Martelli, M., Faggioni, N., Zaccone, R.: Development of a navigation support system by means of a synthetic scenario. In: Sustainable Development and Innovations in Marine Technologies, pp. 481–487. CRC Press (2019)

    Google Scholar 

  17. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96. no. 34 (1996)

    Google Scholar 

  18. Zhu, Y., Ting, K.M., Carman, M.J.: Density-ratio based clustering for discovering clusters with varying densities. Pattern Recogn. 60, 983–997 (2016)

    Article  Google Scholar 

  19. Hu, X., Wang, D., Wu, X.: Varying density spatial clustering based on a hierarchical tree. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 188–202. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73499-4_15

    Chapter  Google Scholar 

  20. Jolliffe, I.: Principal component analysis. In: Encyclopedia of Statistics in Behavioral Science (2005)

    Google Scholar 

  21. Poggio, T., Serre, T.: Models of visual cortex. Scholarpedia 8(4), 3516 (2013)

    Article  Google Scholar 

  22. ImageNet. https://image-net.org/challenges/LSVRC/. Accessed 2 July 2021

  23. Alom, M.Z., et al.: The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018)

  24. Redmon, J., et al.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  26. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  27. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

Download references

Acknowledgement

Part of research activities reported in the paper is carried out within the project - “MARIN - Naval Integrated Remote Environmental Monitoring”, (KATGSO3); fundend by “Programma operativo FESR 2014 – 2020 Obiettivo Convergenza – Regolamento Regionale n. 17/2014 – Titolo II capo 1 – Aiuti ai programmi di investimento delle grandi imprese – Contratti di Programma Regionali” And supported by the COMPASS laboratory of the University of Genova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Faggioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faggioni, N., Leonardi, N., Ponzini, F., Sebastiani, L., Martelli, M. (2022). Obstacle Detection in Real and Synthetic Harbour Scenarios. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2021. Lecture Notes in Computer Science, vol 13207. Springer, Cham. https://doi.org/10.1007/978-3-030-98260-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98260-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98259-1

  • Online ISBN: 978-3-030-98260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics