Improving Evolutionary Generative Adversarial Networks | SpringerLink
Skip to main content

Improving Evolutionary Generative Adversarial Networks

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

Abstract

Generative adversarial network (GAN) is a powerful method to reproduce the distribution of a given data set. It is widely used for generating photo-realistic images or data collections that appear real. Evolutionary GAN (E-GAN) is one of state-of-the-art GAN variations. E-GAN combines population based search and evolutionary operators from evolutionary algorithms with GAN to enhance diversity and search performance. In this study we aim to improve E-GAN by adding transfer learning and crossover which is a key evolutionary operator that is commonly used in evolutionary algorithms, but not in E-GAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

  2. Arora, S., Zhang, Y.: Do GANs actually learn the distribution? An empirical study. arXiv: abs/1706.08224 (2017)

  3. Arotaritei, D.: Genetic algorithm for fuzzy neural networks using locally crossover. Int. J. Comput. Commun. Control 6(1), 8–20 (2011)

    Article  Google Scholar 

  4. Foo, Y.W., Goh, C., Lim, H.C., Zhan, Z.H., Li, Y.: Evolutionary neural network based energy consumption forecast for cloud computing. In: 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 53–64. IEEE (2015)

    Google Scholar 

  5. García-Pedrajas, N., Ortiz-Boyer, D., Hervás-Martínez, C.: An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization. Neural Netw. 19(4), 514–528 (2006)

    Article  Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv: abs/1406.2661 (2014)

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)

  8. Kim, K.J., Cho, S.B.: Prediction of colon cancer using an evolutionary neural network. Neurocomputing 61, 361–379 (2004)

    Article  Google Scholar 

  9. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  10. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  11. Mo, S., Cho, M., Shin, J.: Freeze the discriminator: a simple baseline for fine-tuning GANs. arxiv 2020. arXiv preprint arXiv:2002.10964 (2020)

  12. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. arXiv preprint arXiv:1606.03498 (2016)

  13. Spears, W.M., Anand, V.: A study of crossover operators in genetic programming. In: Ras, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 409–418. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54563-8_104

    Chapter  Google Scholar 

  14. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 23, 921–934 (2019)

    Article  Google Scholar 

  15. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheping Liu , Nasser Sabar or Andy Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Sabar, N., Song, A. (2022). Improving Evolutionary Generative Adversarial Networks. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics