Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net | SpringerLink
Skip to main content

Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net

  • Conference paper
  • First Online:
Systems, Signals and Image Processing (IWSSIP 2021)

Abstract

Automatic cardiac MRI segmentation, including left and right ventricular endocardium and epicardium, has an essential role in clinical diagnosis by providing crucial information about cardiac function. Determining heart chamber properties, such as volume or ejection fraction, directly relies on their accurate segmentation. In this work, we propose a new automatic method for the segmentation of myocardium, left, and right ventricles from MRI images. We introduce a new architecture that incorporates SERes blocks into 3D U-net architecture (3D SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation operations into residual learning. The adaptive feature recalibration ability of squeeze-and-excitation operations boosts the network’s representational power while feature reuse utilizes effective learning of the features, which improves segmentation performance. We evaluate the proposed method on the testing dataset of the MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset and obtain highly comparable results to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.C.D.C.A.M.C.: Post-2017-miccai-challenge testing phase. https://acdc.creatis.insa-lyon.fr/#challenges (2017)

  2. Arnold, J.R., McCann, G.P.: Cardiovascular magnetic resonance: applications and practical considerations for the general cardiologist. Heart 106(3), 174–181 (2020)

    Article  Google Scholar 

  3. Baumgartner, C.F., Koch, L., Pollefeys, M., Konukoglu, E.: An exploration of 2d and 3d deep learning techniques for cardiac MR image segmentation. ArXiv arXiv:1709.04496 (2017)

  4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018). https://doi.org/10.1109/TMI.2018.2837502

    Article  Google Scholar 

  5. Cetin, I., et al.: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 82–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_9

    Chapter  Google Scholar 

  6. Cheng, F., et al.: Learning directional feature maps for cardiac MRI segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 108–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_11

    Chapter  Google Scholar 

  7. Click, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: Learning dense volumetric segmentation from sparse annotation. CoRR abs/1606.06650 (2016). http://arxiv.org/abs/1606.06650

  8. Duan, J., et al.: Automatic 3d bi-ventricular segmentation of cardiac images by a shape-refined multi- task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  9. Habijan, M., Leventić, H., Galić, I., Babin, D.: Estimation of the left ventricle volume using semantic segmentation. In: 2019 International Symposium ELMAR, pp. 39–44 (2019). https://doi.org/10.1109/ELMAR.2019.8918851

  10. Habijan, M., et al.: Overview of the whole heart and heart chamber segmentation methods. Cardiovasc. Eng. Technol. 11(6), 725–747 (2020)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  13. Isensee, F., Jaeger, P., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. CoRR abs/1707.00587 (2017). http://arxiv.org/abs/1707.00587

  14. Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, H.-J.: Automatic segmentation of LV and RV in cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 161–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_17

    Chapter  Google Scholar 

  15. Khened, M., Varghese, A., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: STACOM@MICCAI (2017)

    Google Scholar 

  16. Liu, T., Tian, Y., Zhao, S., Huang, X., Wang, Q.: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis. IEEE Access 8, 82153–82161 (2020). https://doi.org/10.1109/ACCESS.2020.2991424

    Article  Google Scholar 

  17. Liu, Y., et al.: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI. Magn. Reson. Imaging 34 (2015). https://doi.org/10.1016/j.mri.2015.12.027

  18. Lu, J.-T., et al.: DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 723–731. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_80

    Chapter  Google Scholar 

  19. Organization, W.H.: Mortality database (2018). Accessed 19 Jan 2021

    Google Scholar 

  20. Patravali, J., Jain, S., Chilamkurthy, S.: 2d–3d fully convolutional neural networks for cardiac MR segmentation. ArXiv arXiv:1707.09813 (2017)

  21. Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155–195 (2016). https://doi.org/10.1007/s10334-015-0521-4

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  23. Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: Omega-net (omega-net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2018). https://doi.org/10.1016/j.media.2018.05.008

    Article  Google Scholar 

  24. Zotti, C., Luo, Z., Humbert, O., Lalande, A., Jodoin, P.M.: Gridnet with automatic shape prior registration for automatic MRI cardiac segmentation. In: STACOM@MICCAI (2017)

    Google Scholar 

Download references

Acknowledgement

This work has been supported in part by Croatian Science Foundation under the Project UIP-2017-05-4968.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Habijan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habijan, M., Galić, I., Leventić, H., Romić, K., Babin, D. (2022). Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net. In: Rozinaj, G., Vargic, R. (eds) Systems, Signals and Image Processing. IWSSIP 2021. Communications in Computer and Information Science, vol 1527. Springer, Cham. https://doi.org/10.1007/978-3-030-96878-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96878-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96877-9

  • Online ISBN: 978-3-030-96878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics