Abstract
We consider a \(d-\)dimensional lattice of points where, at each lattice point, a time series can be measured. We are interested in reconstructing the time series at all points of the lattice, to a desired error tolerance, by adaptively sampling only a subset of lattice points, each over a potentially short time interval. The method we develop is tailored to atomic force microscopy (AFM) data where time series are well-represented by constant functions at each lattice point. Through a convex weighting of a point’s relative isolation and relative gradient size, we assign a sampling priority. Our method adaptively samples the time series and then reconstructs the time series over the entire lattice. Our adaptive sampling scheme performs significantly better than sampling points homogeneously. We find that for the data provided, we can capture piezoelectric relaxation dynamics and achieve a relative \(\ell _2\) reconstruction error of less than \(10\%\) with a \(47\%\) reduction in measurements, and less than \(5\%\) with a \(25\%\) reduction in measurements.
M. R. Lindstrom and W. J. Swartworth—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, H., Zhiwen, Y., Zhiyong, Y., Qi, A., Bin, G.: Air quality estimation based on active learning and kriging interpolation. Big Data Res. 4(6), 2018061 (2018)
Damelin, S.B., Hoang, N.: On surface completion and image inpainting by biharmonic functions: numerical aspects. Int. J. Math. Math. Sci. 2018 (2018). https://doi.org/10.1155/2018/3950312. Article ID 3950312
Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Rev./Revue Internationale de Statistique 57(3), 238–247 (1989)
Hu, Y., Zhang, D., Jin, Z., Cai, D., He, X.: Active learning via neighborhood reconstruction. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1415–1421. Citeseer (2013)
Hyndman, R.L., Zhang, X., King, M.L., et al.: Bandwidth selection for multivariate kernel density estimation using MCMC. In: Econometric Society 2004 Australasian Meetings, no. 120. Econometric Society (2004)
Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)
Kelley, K.P., et al.: Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. npj Comput. Mater. 6(1), 1–8 (2020)
Kiselev, D., Bdikin, I., Selezneva, E., Bormanis, K., Sternberg, A., Kholkin, A.: Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy. J. Phys. D Appl. Phys. 40(22), 7109 (2007)
Rugar, D., Hansma, P.: Atomic force microscopy. Phys. Today 43(10), 23–30 (1990)
Settles, B.: Active learning literature survey (2009)
Swartworth, W., Lindstrom, M., Needell, D.: RIGS Code. https://github.com/wswartworth/active_imaging
Xu, T.B.: Energy harvesting using piezoelectric materials in aerospace structures. In: Structural Health Monitoring (SHM) in Aerospace Structures, pp. 175–212. Elsevier (2016)
Acknowledgments
WJS and DN acknowledge funding from NSF BIGDATA #1740325 and NSF DMS #2011140.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Lindstrom, M.R., Swartworth, W.J., Needell, D. (2022). Reconstructing Piezoelectric Responses over a Lattice: Adaptive Sampling of Low Dimensional Time Series Representations Based on Relative Isolation and Gradient Size. In: Nichols, J., et al. Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. Communications in Computer and Information Science, vol 1512. Springer, Cham. https://doi.org/10.1007/978-3-030-96498-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-96498-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96497-9
Online ISBN: 978-3-030-96498-6
eBook Packages: Computer ScienceComputer Science (R0)