Partial Order Reduction for Timed Actors | SpringerLink
Skip to main content

Partial Order Reduction for Timed Actors

  • Conference paper
  • First Online:
Software Verification (NSV 2021, VSTTE 2021)

Abstract

We propose a compositional approach for the Partial Order Reduction (POR) in the state space generation of asynchronous timed actors. We define the concept of independent actors as the actors that do not send messages to a common actor. The approach avoids exploring unnecessary interleaving of executions of independent actors. It performs on a component-based model where actors from different components, except for the actors on borders, are independent. To alleviate the effect of the cross-border messages, we enforce a delay condition, ensuring that an actor introduces a delay in its execution before sending a message across the border of its component. Within each time unit, our technique generates the state space of each individual component by taking its received messages into account. It then composes the state spaces of all components. We prove that our POR approach preserves the properties defined on timed states (states where the only outgoing transition shows the progress of time). We generate the state space of a case study in the domain of air traffic control systems based on the proposed POR. The results on our benchmarks illustrate that our POR method, on average, reduces the time and memory consumption by 76 and 34%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA (1986)

    Book  Google Scholar 

  2. Akka library (2021). http://akka.io

  3. Bagheri, M., Sirjani, M., Khamespanah, E., Baier, C., Movaghar, A.: Magnifier: a compositional analysis approach for autonomous traffic control. IEEE Trans. Softw. Eng. 1 (2021). https://doi.org/10.1109/TSE.2021.3069192

  4. Bagheri, M., et al.: Coordinated actors for reliable self-adaptive systems. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 241–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4_15

    Chapter  Google Scholar 

  5. Bagheri, M., et al.: Coordinated actor model of self-adaptive track-based traffic control systems. J. Syst. Softw. 143, 116–139 (2018)

    Article  Google Scholar 

  6. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055643

    Chapter  Google Scholar 

  7. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5) (2017). https://doi.org/10.1145/3122848

  8. Earle, C.B., Fredlund, L.Å.: Verification of timed erlang programs using McErlang. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 251–267. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30793-5_16

    Chapter  Google Scholar 

  9. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking for composite actor systems. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 143–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37635-1_9

    Chapter  Google Scholar 

  10. Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

    Chapter  MATH  Google Scholar 

  11. Håkansson, J., Pettersson, P.: Partial order reduction for verification of real-time components. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 211–226. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1_16

    Chapter  MATH  Google Scholar 

  12. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theor. Comput. Sci. 410(2), 202–220 (2009). distributed Computing Techniques

    Google Scholar 

  13. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best friend: partial order reduction for timed automata with abstractions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_26

    Chapter  Google Scholar 

  14. Hewitt, C.: Description and theoretical analysis (using schemata) of planner: A language for proving theorems and manipulating models in a robot. Technical report, Massachusetts Inst of Tech Cambridge ArtificiaL Intelligence Lab (1972)

    Google Scholar 

  15. Khamespanah, E., Sirjani, M., Sabahi Kaviani, Z., Khosravi, R., Izadi, M.J.: Timed rebeca schedulability and deadlock freedom analysis using bounded floating time transition system. Sci. Comput. Program. 98, 184–204 (2015). special Issue on Programming Based on Actors, Agents and Decentralized Control

    Google Scholar 

  16. Lohstroh, M., et al.: Reactors: a deterministic model for composable reactive systems. In: Chamberlain, R., Edin Grimheden, M., Taha, W. (eds.) CyPhy/WESE -2019. LNCS, vol. 11971, pp. 59–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41131-2_4

    Chapter  Google Scholar 

  17. Minea, M.: Partial order reduction for model checking of timed automata. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9_30

    Chapter  Google Scholar 

  18. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_34

    Chapter  Google Scholar 

  19. Source codes (2021). https://github.com/maryambagheri1989/POR/

  20. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II. Ptolemy.org, Berkeley, CA, USA (2014)

    Google Scholar 

  21. Afra Tool (2021). http://rebeca-lang.org/alltools/Afra

  22. Reynisson, A.H., et al.: Modelling and simulation of asynchronous real-time systems using timed rebeca. Sci. Comput. Program. 89, 41–68 (2014). https://doi.org/10.1016/j.scico.2014.01.008, http://www.sciencedirect.com/science/article/pii/S0167642314000239, special issue on the 10th International Workshop on the Foundations of Coordination Languages and Software Architectures (FOCLASA 2011)

  23. Sirjani, M., Lee, E.A., Khamespanah, E.: Model checking software in cyberphysical systems. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 1017–1026 (2020)

    Google Scholar 

  24. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of reactive systems using rebeca. Fundam. Inf. 63(4), 385–410 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Verification of orchestration systems using compositional partial order reduction. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 98–114. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_9

    Chapter  Google Scholar 

  26. Virding, R., Wikström, C., Williams, M., Armstrong, J.: Concurrent Programming in ERLANG, 2nd (ed.). Prentice Hall International (UK) Ltd., GBR, London (1996)

    Google Scholar 

  27. Ölveczky, P.C., Meseguer, J.: Real-time maude 2.1. Electron. Notes Theor. Comput. Sci. 117, 285–314 (2005). proceedings of the Fifth International Workshop on Rewriting Logic and Its Applications (WRLA 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Bagheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagheri, M., Sirjani, M., Khamespanah, E., Hojjat, H., Movaghar, A. (2022). Partial Order Reduction for Timed Actors. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds) Software Verification. NSV VSTTE 2021 2021. Lecture Notes in Computer Science(), vol 13124. Springer, Cham. https://doi.org/10.1007/978-3-030-95561-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95561-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95560-1

  • Online ISBN: 978-3-030-95561-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics