Modeling Round-Off Errors in Hydrodynamic Simulations | SpringerLink
Skip to main content

Modeling Round-Off Errors in Hydrodynamic Simulations

  • Conference paper
  • First Online:
Software Verification (NSV 2021, VSTTE 2021)

Abstract

The growth of the computing capacities makes it possible to obtain more and more precise simulation results. These results are often calculated in binary64 with the idea that round-off errors are not significant. However, exascale is pushing back the known limits and the problems of accumulating round-off errors could come back and require increasing further the precision. But working with extended precision, regardless of the method used, has a significant cost in memory, computation time and energy and would not allow to use the full performance of HPC computers. It is therefore important to measure the robustness of the binary64 by anticipating the future computing resources in order to ensure its durability in numerical simulations. For this purpose, numerical experiments have been performed and are presented in this article. Those were performed with weak floats which were specifically designed to conduct an empirical study of round-off errors in hydrodynamic simulations and to build an error model that extracts the part due to round-off error in the results. This model confirms that errors remain dominated by the scheme errors in our numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If several realizations of the same experiment under identical conditions give exactly identical results, then the experiment is said to be reproducible.

References

  1. Ascher, U.M., Greif, C.: A First Course in Numerical Methods. Society for Industrial and Applied Mathematics, USA (2011)

    Google Scholar 

  2. Atkinson, K.E., Han, W., Stewart, D.: Euler’s method, chap. 2, pp. 15–36. Wiley, Hoboken (2011)

    Google Scholar 

  3. Boldo, S., Ben Salem-Knapp, L., Weens, W.: Bounding the round-off error of the upwind scheme for advection, submitted

    Google Scholar 

  4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. J. Autom. Reason. 50(4), 423–456 (2013). https://doi.org/10.1007/s10817-012-9255-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Boldo, S., Faissole, F., Chapoutot, A.: Round-off error and exceptional behavior analysis of explicit Runge-Kutta methods. IEEE Trans. Comput. (2019)

    Google Scholar 

  6. Chapoutot, A., Alexandre dit Sandretto, J., Mullier, O.: Validated explicit and implicit Runge-Kutta methods. In: Small Workshop on Interval Methods. Prague, Czech Republic (2015)

    Google Scholar 

  7. Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’Académie Royale des Sciences et des Belles Lettres de Berlin 11, 274–315 (1755)

    Google Scholar 

  8. Gautschi, W.: Numerical Analysis: An Introduction. Birkhauser Boston Inc., Cambridge (1997)

    MATH  Google Scholar 

  9. Godunov, S.K.: Eine Differenzenmethode für die Näherungsberechnung unstetiger Lösungen der hydrodynamischen Gleichungen. Mat. Sb., Nov. Ser. 47, 271–306 (1959)

    Google Scholar 

  10. Harvey, R., Verseghy, D.L.: The reliability of single precision computations in the simulation of deep soil heat diffusion in a land surface model. Clim. Dyn. 46(11), 3865–3882 (2016). https://doi.org/10.1007/s00382-015-2809-5

    Article  Google Scholar 

  11. Henrici, P.: Error propagation for difference methods. In: The SIAM Series in Applied Mathematics. Wiley, New York (1963)

    Google Scholar 

  12. Heroux, M.A., et al.: ECP software technology capability assessment report (2020). www.exascaleproject.org

  13. Higham, N.J.: 2. Floating point arithmetic, pp. 35–60. SIAM (2002)

    Google Scholar 

  14. IEEE: IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers IEEE Std 754–2008, pp. 1–70 (2008)

    Google Scholar 

  15. Izquierdo, L.R., Polhill, J.G.: Is your model susceptible to floating-point errors? J. Artif. Soc. Soc. Simul. 9(4), 1–4 (2006)

    Article  Google Scholar 

  16. Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)

    Article  Google Scholar 

  17. Knuth, D.E.: The art of computer programming. In: Seminumerical Algorithms, 3rd edn, vol. 2. Addison-Wesley, Boston (1997)

    Google Scholar 

  18. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

    Article  MathSciNet  Google Scholar 

  19. LeVeque, R.J.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics, Cambridge University Press (2002)

    Google Scholar 

  20. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic, 2nd edn. Birkhäuser Boston (2018). ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1. ISBN 978-3-319-76525-9

    Google Scholar 

  21. Muller, J.M., et al.: Handbook of Floating-point Arithmetic, 2nd edn. Birkhäuser, Basel (2018)

    Book  Google Scholar 

  22. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Zh. Vychisl. Mat. Mat. Fiz, pp. 267–279 (1961)

    Google Scholar 

  23. Alexandre dit Sandretto, J., Chapoutot, A.: Validated simulation of differential algebraic equations. In: Small Workshop on Interval Methods, Prague, Czech Republic (2015)

    Google Scholar 

  24. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  Google Scholar 

  25. Spiegel, S.C., Huynh, H., DeBonis, J.R.: A survey of the isentropic euler vortex problem using high-order methods, chap. 1, p. 1 (2015). https://arc.aiaa.org/

  26. Thornes, T., Düben, P., Palmer, T.: A power law for reduced precision at small spatial scales: experiments with an SQG model. Q. J. R. Meteorol. Soc. 144(713), 1179–1188 (2018)

    Article  Google Scholar 

  27. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Heidelberg (2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  28. Váňa, F., et al.: Single precision in weather forecasting models: an evaluation with the IFS. Mon. Weather Rev. 145(2), 495–502 (2017)

    Article  Google Scholar 

  29. Weens, W.: Toward a predictive model to monitor the balance between discretization and rounding errors in hydrodynamic simulations. In: SIAM Conference on Parallel Processing for Scientific Computing (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Ben Salem-Knapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weens, W., Vazquez-Gonzalez, T., Salem-Knapp, L.B. (2022). Modeling Round-Off Errors in Hydrodynamic Simulations. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds) Software Verification. NSV VSTTE 2021 2021. Lecture Notes in Computer Science(), vol 13124. Springer, Cham. https://doi.org/10.1007/978-3-030-95561-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95561-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95560-1

  • Online ISBN: 978-3-030-95561-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics